Плюсы и минусы атомной энергетики кратко. Ядерная энергетика плюсы и минусы. Аварии на АЭС

Плюсы и минусы атомной энергетики. За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания с этой точки зрения она может рассматриваться как экологически чистая, основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии типа Чернобыльской или на американской станции Тримайл Айленд и проблема переработки использованного ядерного топлива.

Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих.

Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. или около 5 млн. низкосортного угля, то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива на угольных станциях эти расходы составляют до 50 себестоимости. Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу.

Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25 всех вредных выбросов в атмосферу.

Около 60 выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза. К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской.

Сейчас на АЭС, использующих реакторы типа Чернобыльского РБМК, приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ Международного агентства по атомной энергии, полностью исключают аварию подобной тяжести по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро.

Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы. 2

Конец работы -

Эта тема принадлежит разделу:

Перспективы развития атомной энергетики в России

Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно-технического и.. Производство первичных энергоресурсов в 1993 г. составило 82 от уровня 1990 и.. Отсутствие необходимых инвестиций не позволило в 90-х годах компенсировать естественное выбытие производственных..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Ядерная энергетика (Атомная энергетика) - это отрасль энергетики, занимающаяся производством электрической и тепловой энергии путём преобразования ядерной энергии.
Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана-235 или плутония. Ядра делятся при попадании в них нейтрона, при этом получаются новые нейтроны и осколки деления. Нейтроны деления и осколки деления обладают большой кинетической энергией. В результате столкновений осколков с другими атомами эта кинетическая энергия быстро преобразуется в тепло.
Хотя в любой области энергетики первичным источником является ядерная энергия (например, энергия солнечных ядерных реакций в гидроэлектростанциях электростанциях, работающих на органическом топливе, энергия радиоактивного распада в геотермальных электростанциях), к ядерной энергетике относится лишь использование управляемых реакций в ядерных реакторах.
Ядерная энергия производится в атомных электрических станциях, используется на атомных ледоколах, атомных подводных лодках; США осуществляют программу по созданию ядерного двигателя для космических кораблей, кроме того, предпринимались попытки создать ядерный двигатель для самолётов (атомолётов) и «атомных» танков.
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива.
Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.
К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы.
Плюсы атомной энергетики в сравнении с другими видами получения энергии очевидны. Высокая мощность и низкая итоговая себестоимость энергии открыли в свое время большие перспективы для развития атомной энергетики и строительства АЭС, рентабельность. В большинстве стран мира плюсы атомной энергетики учитываются и сегодня – строятся все новые и новые энергоблоки и заключаются контракты на строительство АЭС в будущем.
Также в плюсы атомной энергетики можно смело записать и то, что использование ядерного топлива не сопровождается процессом горения и выбросом в атмосферу вредных веществ и парниковых газов, а значит, строительства дорогостоящих сооружений для очистки выбросов в атмосферу не потребуется. Четверть всех вредных выбросов в атмосферу приходится на долю ТЭЦ, что очень негативно сказывается на экологической обстановке городов, расположенных вблизи них, и в целом на состоянии атмосферы. Города же, расположенные недалеко от атомных станций, функционирующих в штатном режиме, в полной мере ощущают плюсы атомной энергетики и считаются одними из самых экологически чистых во всех странах мира. В них производится постоянный контроль радиоактивного состояния земли, воды и воздуха, а также анализ флоры и фауны – такой постоянный мониторинг позволяет реально оценить минусы и плюсы атомной энергетики и ее влияние на экологию региона. Стоит заметить, что за время наблюдений в районах расположения АЭС ни разу не регистрировались отклонения радиоактивного фона от нормального, если речь не шла о чрезвычайных ситуациях.
На этом плюсы атомной энергетики не заканчиваются. В условиях надвигающегося энергетического голода и истощения запасов углеродного топлива, естественным образом встает вопрос и о запасах топлива для АЭС. Ответ на названный вопрос весьма оптимистичен: разведенные запасы урана и других радиоактивных элементов в земной коре составляют несколько миллионов тонн, и при текущем уровне потребления их можно считать практически неисчерпаемыми
Но плюсы атомной энергетики распространяются не только на АЭС. Энергия атома используется на сегодняшний день и в иных целях, помимо снабжения населения и промышленности электрической энергией. Так, нельзя переоценить плюсы атомной энергетики для подводного флота и атомных ледоколов. Использование атомных двигателей позволяет им долгое время существовать автономно, перемещаться на любые расстояния, а подлодкам – месяцами находиться под водой. На сегодняшний день в мире ведутся разработки подземных и плавучих АЭС и ядерных двигателей для космических летальных аппаратов.
Учитывая плюсы атомной энергетики, можно смело утверждать, что в будущем человечество продолжит использовать возможности атомной энергии, которая при осторожном обращении меньше загрязняет окружающую среду и практически не нарушает экологическое равновесие на нашей планете. Но плюсы атомной энергетики существенно померкли в глазах мировой общественности после двух серьезнейших аварий: на Чернобыльской АЭС в 1986 году и на АЭС «Фукусима-1» в 2011 году. Масштабы этих происшествий таковы, что их последствия способны перекрыть практически все плюсы атомной энергетики, известные человечеству. Трагедия в Японии для ряда стран стала толчком к переработке энергетической стратегии и смещения акцентов в сторону использования альтернативных источников энергии.
Перспективы развития атомной энергетики.
При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.
Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива "полезного" урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире. Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.
Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин.

Плюсы и минусы атомной энергетики
За 40 лет развития атомной энергетики в мире построено около 400 энергоблоков в 26 странах мира с суммарной энергетической модностью около 300 млн. кВт. Основными преимуществами атомной энергетики являются высокая конечная рентабельность и отсутствие выбросов в атмосферу продуктов сгорания (с этой точки зрения она может рассматриваться как экологически чистая), основными недостатками потенциальная опасность радиоактивного заражения окружающей среды продуктами деления ядерного топлива при аварии (типа Чернобыльской или на американской станции Тримайл Айленд) и проблема переработки использованного ядерного топлива.
Остановимся сначала на преимуществах. Рентабельность атомной энергетики складывается из нескольких составляющих. Одна из них независимость от транспортировки топлива. Если для электростанции мощностью 1 млн. кВт требуется в год около 2 млн. т.у.т. (или около 5 млн. низкосортного угля), то для блока ВВЭР-1000 понадобится доставить не более 30 т. обогащенного урана, что практически сводит к нулю расходы на перевозку топлива (на угольных станциях эти расходы составляют до 50% себестоимости). Использование ядерного топлива для производства энергии не требует кислорода и не сопровождается постоянным выбросом продуктов сгорания, что, соответственно, не потребует строительства сооружений для очистки выбросов в атмосферу. Города, находящиеся вблизи атомных станций, являются в основном экологически чистыми зелеными городами во всех странах мира, а если это не так, то это происходит из-за влияния других производств и объектов, расположенных на этой же территории. В этом отношении ТЭС дают совсем иную картину. Анализ экологической ситуации в России показывает, что на долю ТЭС приходится более 25% всех вредных выбросов в атмосферу. Около 60% выбросов ТЭС приходится на европейскую часть и Урал, где экологическая нагрузка существенно превышает предельную. Наиболее тяжелая экологическая ситуация сложилась в Уральском, Центральном и Поволжском районах, где нагрузки, создаваемые выпадением серы и азота, в некоторых местах превышают критические в 2-2,5 раза.
К недостаткам ядерной энергетики следует отнести потенциальную опасность радиоактивного заражения окружающей среды при тяжелых авариях типа Чернобыльской. Сейчас на АЭС, использующих реакторы типа Чернобыльского (РБМК), приняты меры дополнительной безопасности, которые, по заключению МАГАТЭ (Международного агентства по атомной энергии), полностью исключают аварию подобной тяжести: по мере выработки проектного ресурса такие реакторы должны быть заменены реакторами нового поколения повышенной безопасности. Тем не менее в общественном мнении перелом по отношению к безопасному использованию атомной энергии произойдет, по-видимому, не скоро. Проблема утилизации радиоактивных отходов стоит очень остро для всего мирового сообщества. Сейчас уже существуют методы остекловывания, битумирования и цементирования радиоактивных отходов АЭС, но требуются территории для сооружения могильников, куда будут помещаться эти отходы на вечное хранение. Страны с малой территорией и большой плотностью населения испытывают серьезные трудности при решении этой проблемы. #2

Ядерная топливно-энергетическая база России.

Пуск в 1954 году первой атомной электростанции мощностью всего лишь 5000 кВт стал событием мировой важности. Он ознаменовал начало развития атомной энергетики, которая может обеспечить человечество электрической и тепловой энергией на длительный период. Ныне мировая доля электрической энергии, вырабатываемой на АЭС, относительно невелика и составляет около 17 процентов, но в ряде стран она достигает 50-75 процентов. В Советском Союзе была создана мощная ядерно-энергетическая промышленность, которая обеспечивала топливом не только свои АЭС, но и АЭС ряда других стран. В настоящее время на АЭС России, стран СНГ и Восточной Европы эксплуатируются 20 блоков с реакторами ВВЭР-1000, 26 блоков с реакторами ВВЭР-440, 15 блоков с реакторами РБМК и 2 блока с реакторами на быстрых нейтронах. Обеспечение ядерным топливом этих реакторов и определяет объем промышленного производства твэлов и ТВС в России. Они изготавливаются на двух заводах: в г.Электросталь - для реакторов ВВЭР-440, РБМК и реакторов на быстрых нейтронах; в г-Новосибирске - для реакторов ВВЭР-1000.Таблетки для твэлов ВВЭР-1000 и РБМК поставляет завод, находящийся в Казахстане (г.Усть-Каменогорск). #4
В настоящее время из 15 атомных электростанций, построенных в СССР, 9 находятся на территории России; установленная мощность их 29 энергоблоков составляет 21242 мегаватта. Среди действующих энергоблоков 13 имеют корпусные реакторы ВВЭР (водо-водяной энергетический реактор, активная зона которого размещается в металлическом или из предварительно напряженного бетона корпусе, рассчитанном на полное давление теплоносителя), 11 блоков- канальные реакторы РМБК-1000(РМБК - графито-водяной реактор без прочного корпуса. Теплоноситель в этом реакторе протекает через трубы, внутри которых находятся тепловыделяющие элементы), 4 блока- ЭГП (водо-графитовый канальный реактор с кипящим теплоносителем) по 12 мегаватт каждый установлены на Билибинской АТЭС и еще один энергоблок снабжен реактором БН-600 на быстрых нейтронах. Следует заметить, что основной парк корпусных реакторов последнего поколения был размещен на Украине (10 блоков ВВЭР-1000 и 2 блока ВВЭР-440). #9

Новые энергоблоки.
Сооружение нового поколения энергоблоков с корпусными реакторами (с водой под давлением) начинается в этом десятилетии. Первыми из них станут блоки ВВЭР-640, конструкция и параметры которых учитывают отечественный и мировой опыт, а также блоки с усовершенствованным реактором ВВЭР-1000 с существенно повышенными показателями безопасности. Головные энергоблоки ВВЭР-640 размещаются на площадках г. Сосновый Бор Ленинградской области и Кольской АЭС, а на базе ВВЭР-1000 - на площадке Нововоронежской АЭС.
Разработан также проект корпусного реактора ВПБЭР-600 средней мощности с интегральной компоновкой. АЭС с такими реакторами смогут сооружаться несколько позже.
Названные типы оборудования при своевременном выполнении всех научно-исследовательских и опытных работ обеспечат основные потребности атомной энергетики на прогнозируемый 15-20-летний период.
Существуют предложения продолжать работы по графито-водяным канальным реакторам, перейти на электрическую мощность 800 мегаватт и создать реактор, не уступающий реактору ВВЭР по безопасности. Такие реакторы могли бы заменить действующие реакторы РБМК. В перспективе возможно строительство энергоблоков с современными безопасными реакторами БН-800 на быстрых нейтронах. Эти реакторы могут быть использованы и для вовлечения в топливный цикл энергетического и оружейного плутония, для освоения технологий выжигания актиноидов (радиоактивных элементов-металлов, все изотопы которых радиоактивны). #9

Перспективы развития атомной энергетики.
При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.
Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива "полезного" урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U 238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. .Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.
Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин. #2
Отдельно рассмотрим перспективы атомной энергетики в России . Созданный в России замкнутый научно-производственный комплекс технологически связанных предприятий охватывает все сферы, необходимые для функционирования атомной отрасли, включая добычу и переработку руды, металлургию, химию и радиохимию, машино- и приборостроение, строительный потенциал. Уникальным является научный и инженерно-технический потенциал отрасли. Промышленно-сырьевой потенциал отрасли позволяет уже в настоящее время обеспечить работу АЭС России и СНГ на много лет вперед, кроме того, планируются работы по вовлечению в топливный цикл накопленного оружейного урана и плутония. Россия может экспортировать природный и обогащенный уран на мировой рынок, учитывая, что уровень технологии добычи и переработки урана по некоторым направлениям превосходит мировой, что дает возможность в условиях мировой конкуренции удерживать позиции на мировом урановом рынке.
Но дальнейшее развитие отрасли без возврата к ней доверия населения невозможно. Для этого нужно на базе открытости отрасли формировать позитивное общественное мнение и обеспечить возможность безопасного функционирования АЭС под контролем МАГАТЭ. Учитывая экономические трудности России, отрасль сосредоточится в ближайшее время на безопасной эксплуатации существующих мощностей с постепенной заменой отработавших блоков первого поколения наиболее совершенными российскими реакторами (ВВЭР-1000, 500, 600), а небольшой рост мощностей произойдет за счет завершения строительства уже начатых станций. На длительную перспективу в России вероятен рост мощностей в переходом на АЭС новых поколений, уровень безопасности и экономические показатели которых обеспечат устойчивое развитие отрасли на перспективу.


Обеспечение энергетической безопасности - одна из ключевых задач любого современного государства. На сегодняшний день одним из самых передовых вариантов добычи электроэнергии является использование ядерных реакторов. В связи с этим строится атомная электростанция в Беларуси. Об этом промышленном объекте мы поговорим в статье.

Основная информация

Белорусская возводится в Гродненской области страны буквально в 50 километрах от столицы соседней Литвы - Вильнюса. Строительство началось в 2011 году, а завершиться по плану должно в 2019 году. Проектная мощность агрегата составляет 2400 МВт.

Островецкая площадка - место, где строится станция, - курируется российскими специалистами из компании "Атомстройэкспорт".

Несколько слов о проектировании

В Беларуси обойдётся государственному бюджету в 11 миллиардов американских долларов.

Сам же вопрос монтажа объекта в стране возник ещё в 1990-х годах, но окончательное решение о начале строительства было принято лишь в 2006 году. Основным местом для станции выбрали город Островец.

Влияние политики

Возводить АЭС, анализируя плюсы и минусы атомной энергетики, были готовы начать сразу же несколько иностранных держав: Китай, Чехия, США, Франция, Россия. Однако в итоге главным подрядчиком стала Российская Федерация. Хотя изначально считалось, что это строительство будет невыгодно РФ, которая планировала ввести в эксплуатацию свою АЭС в Калининградской области. Но все же в октябре 2011 года между россиянами и белорусами был подписан контракт на поставку оборудования в Белорусский город Островец.

Законодательный аспект

В Беларуси строится в соответствии с законом, регламентирующим показатели радиационной безопасности населения страны. В этом акте прописаны условия, обязательные для их обеспечения, которые позволят людям сохранить жизнь и здоровье в условиях эксплуатации АЭС.

Денежный займ

С самого начала разработки проекта окончательная стоимость его варьировалась, так как рассматривались различные типы реакторов. Изначально требовалось 9 миллиардов долларов, 6 из которых должны было пойти на само строительство, а 3 на создание всей необходимой инфраструктуры: линий ЛЭП, жилых домов для работников станции, железнодорожных путей и прочего.

Уже сразу стало понятно, что всей необходимой суммы у Белоруссии просто нет. И потому руководство страны планировало взять кредит у России, причём в виде "живых" денег. При этом сразу же белорусы сказали, что если денег они не получат, то строительство окажется под угрозой срыва. В свою очередь российские власти озвучили свои опасения по поводу того, что их соседи окажутся неспособными вернуть долг или используют полученные средства для поддержания экономики своей страны.

В связи с этим российские чиновники вынесли предложение сделать так, чтобы атомная электростанция в Беларуси стала совместным предприятием, однако белорусская сторона на это ответила отказом.

Точка в этом споре была поставлена 15 марта 2015 года, когда Путин посетил Минск и предоставил Беларуси 10 миллиардов для строительства станции. Ориентировочный срок окупаемости проекта около 20 лет.

Строительный процесс

Выемка грунта на объекте началась в 2011 году. А через два года Лукашенко подписал указ, дающий право российскому генподрядчику начать строительство такого огромного промышленного объекта, как атомная электростанция в Беларуси.

В конце мая 2014 года был полностью готов котлован, и стартовали работы по заливке фундамента здания второго В декабре 2015 года на станцию завезли корпус для первого реактора.

Чрезвычайные происшествия

В мае 2016 года в СМИ просочилась информация о том, что на строительной площадке АЭС якобы произошло обрушение металлоконструкции. Белорусский МИД в свою очередь передал официальный ответ литовцам, что никаких нештатных ситуаций на стройке не произошло.

Но к октябрю 2016 года количество официальных несчастных случаев во время возведения станции достигло десяти, три из которых оказались летальными.

Скандал

Как сообщил один из гражданских активистов Белоруссии, по его данным, 10 июля 2015 года во время репетиции установки корпуса реактора произошло его падение на землю. Планировалось, что на следующий день монтаж должен был пройти в присутствии журналистов и телевидения.

26 июля Министерство энергетики страны подтвердило факт ЧП, указав, что инцидент произошёл на площадке хранения корпуса во время его строповки для последующего перемещения в горизонтальном направлении. Данная вызвала мгновенную и крайне острую реакцию со стороны Литвы. 28 июля министр энергетики этой прибалтийской страны подал ноту белорусскому послу с просьбой уточнить все детали происшедшего и уведомить о них.

1 августа монтажные работы по установке корпуса были приостановлены и тогда же главный конструктор этого агрегата сказал, что проведенные теоретические расчёты, показали: реактор не получил серьёзных повреждений от падения. Такого же мнения придерживался и глава "Росатома", указавший на отсутствие оснований для запрета эксплуатации корпуса.

Однако совсем другого мнения придерживались физики-ядерщики и прочие технические специалисты. Все они в один голос говорили: применять упавший корпус в дальнейшем нельзя. Это объяснялось тем, что, учитывая вес изделия, сварочные швы и покрытие могли получить критические повреждения. Все эти дефекты впоследствии могли проявиться из-за непрерывного воздействия потока нейтронов и привести к окончательному разрушению всей конструкции. Кроме того, инженеры отмечали отсутствие полноценного опыта производства подобных корпусов у завода-изготовителя, расположенного в Волгодонске, который не выпускал подобные узлы более тридцати лет.

В итоге 11 августа министр энергетики Беларуси заявил, что реактор все-таки заменят. В результате, сроки окончания монтажных операций сдвинутся на неопределённый срок. В качестве решения проблемы "Росатом" вынес предложение использовать корпус реактора второго блока.

Протестные акции

В самой республике неоднократно были проведены многочисленные народные выступления против постройки АЭС. Также негативное отношение к возведению станции высказали чиновники высших рангов в Литве и Австрии. Оба этих государства отметили неготовность проекта к реализации по целому ряду причин.

Достоинства и недостатки атомной энергетики

Рассматривая плюсы и минусы атомной энергетики, стоит заметить, что за счет специфики протекания ядерных реакций, затраты потребляемого топлива достаточно малы. Это и является основным положительным моментом данного вида производства электричества. Также, как это ни странно звучит, но является экологически чистым. Даже ТЭС делает больше вредных выбросов в атмосферу, чем АЭС.

Из отрицательных моментов атомных реакторов можно отметить проблематичность процесса утилизации отходов и высокую опасность техногенных аварий, которые потенциально способны нанести вред миллионам людей.

Минусы атомной энергетики после Чернобыльской аварии стали очевидными для мировой общественности, а события на «Фукусиме-1» окончательно доказали опасность использования «мирного атома». Считается, что вероятность крупных аварий на АЭС крайне низка, но за последние 50 лет произошло уже 3 крупных события, принесших значительный вред человечеству: Чернобыль, Фукусима и ПО «Маяк» (в 1957 году). На устранения последствий названных аварий уйдут десятки лет.
Минусы атомной энергетики заключаются не только в том, что существует угроза загрязнения окружающей среды в результате аварии, но и в том, что даже при работе в нормальном режиме АЭС производит радиоактивные отходы. Вода, охлаждающая турбины реакторов, обычно просто сбрасывается в ближайшие водоемы, а радиоактивный пар и другие газы выходят в атмосферу. А образующиеся в процессе выработки энергии радиоактивные отходы являются еще одним серьезным минусом атомной энергетики. В большинстве стран отработанное ядерное топливо не используется, и для его утилизации используются технологии складирования переработанного топлива в герметичных металлических контейнерах на свалках ядерных отходов. Но в ряде стран – во Франции, Японии, России и Великобритании – такое топливо подвергается дальнейшей переработке, что обеспечивает экономическую эффективность производства, но в результате получается еще большее количество радиоактивных отходов, ведь все оборудование, реактивы и даже одежда персонала подвергаются загрязнению. В настоящее время не разработана технология, которая позволила бы уменьшить эти явные минусы атомной энергетики и утилизировать ядерные отходы безопасно для окружающей среды.
Минусы атомной энергетики не ограничиваются только работой АЭС: ведь до того, как уран в виде ядерного топлива попадет в реактор, он проходит несколько этапов, и везде при этом оставляет за собой радиоактивный след. В процессе добычи урана в рудниках скапливаются радиоактивные газы – радий и радон, провоцирующие развитие разных форм онкологических заболеваний. Даже на этом начальном этапе минусы атомной энергетики очень велики – ведь здоровье тысяч людей, участвующих в процессе добычи или живущих рядом, подвергается большой опасности. В процессе последующей работы по обогащению урана количество радиоактивных отходов еще больше увеличивается. Сторонники использования атомной энергии обычно не озвучивают эти минусы атомной энергетики.
Следует отметить также, что в настоящее время не все минусы атомной энергетики оценены в должной мере, ведь в мире ни один реактор еще полностью не демонтирован. При этом уже сейчас большинство экспертов сходятся во мнении, что стоимость демонтажа будет очень высокой, по крайней мере, не меньше стоимости строительства реактора. В ближайшее десятилетие около 350 реакторов выработают свой ресурс, и они должны быть демонтированы, но способа сделать это безопасно и быстро пока не существует. Для этих целей в некоторых странах предлагают перевозить отработавшие реакторы в специальные могильники, а в других склоняются к строительству защитных саркофагов непосредственно над отработанным реактором.
Впрочем, несмотря на все озвученные минусы атомной энергетики, в мире сегодня работает 436 ядерных реакторов, их общая мощность около 351 тыс. МВт. Безусловно, это серьезный вклад в общемировую энергетическую систему, однако проводимые исследования гласят, что альтернативные источники энергии, не имеющие перечисленных минусов атомной энергетики, при существующих темпах развития технологий смогут вырабатывать такое количество электроэнергии уже через 10-15 лет. Антиядерные движения в разных странах мира занимают однозначную позицию: минусы атомной энергетики во много раз превышают получаемые выгоды, и потому строительство АЭС и производство ядерных отходов необходимо прекратить.



Отчетность