Оптимальное управление системами. Оптимальные автоматические системы. Понятия о фазовом состоянии и фазовой траектории объекта

Для проектирования оптимальной САУ необходима полная информация об ОУ, возмущающих и задающих воздействиях, начальном и конечном состояниях ОУ. Далее требуется выбрать критерий оптимальности. В качестве такого критерия можно использовать один из показателей качества системы. Однако требования к отдельным показателям качества, как правило, противоречивы (например, повышение точности системы достигается уменьшением запаса устойчивости). Кроме того, оптимальная система должна иметь минимально возможную ошибку не только при отработке какого-то конкретного управляющего воздействия, но в течение всего времени работы системы. Следует также учитывать, что решение задачи оптимального управления зависит не только от структуры системы, но и от параметров составляющих ее элементов.

Достижение оптимального функционирования САУ во многом определяется тем, как осуществляется управление во времени, какова программа, или алгоритм управления. В связи с этим для оценки оптимальности систем используют интегральные критерии, вычисляемые как сумма значений интересующего проектировщиков параметра качества системы за все время процесса управления.

В зависимости от принятого критерия оптимальности рассматривают следующие виды оптимальных систем.

1. Системы , оптимальные по быстродействию , которые обеспечивают минимальное время перевода ОУ из одного состояния в другое. В этом случае критерий оптимальности выглядит следующим образом:

где / н и / к - моменты начала и окончания процесса управления.

В таких системах длительность процесса управления минимальна. Простейший пример - система управления двигателем, обеспечивающая минимальное время разгона его до заданной частоты вращения с учетом всех имеющихся ограничений.

2. Системы , оптимальные по расходу ресурсов , которые гарантируют минимум критерия

где к - коэффициент пропорциональности; U(t) - управляющее воздействие.

Такая система управления двигателем обеспечивает, например, минимальный расход топлива за все время управления.

3. Системы , оптимальные по потерям управления (или по точности), которые обеспечивают минимальные ошибки управления на основании критерия где e(f) - динамическая ошибка.

В принципе задача проектирования оптимальной САУ может быть решена простейшим методом перебора всех возможных вариантов. Конечно, такой метод требует больших затрат времени, но современные ЭВМ позволяют в некоторых случаях им воспользоваться. Для решения задач оптимизации разработаны специальные методы вариационного исчисления (метод максимума, метод динамического программирования и др.), позволяющие учесть все ограничения реальных систем.

В качестве примера рассмотрим, каким должно быть оптимальное по быстродействию управление электродвигателем постоянного тока, если подаваемое на него напряжение ограничено предельной величиной {/ лр, а сам двигатель можно представить в виде апериодического звена 2-го порядка (рис. 13.9, а).

Метод максимума позволяет рассчитать закон изменения и(г), обеспечивающий минимальное время разгона двигателя до частоты вращения (рис. 13.9, б). Процесс управления данным двигателем должен состоять из двух интервалов, в каждом из которых напряжение u(t) принимает свое предельное допустимое значение (в интервале 0 - /,: u(t) = +?/ пр, в интервале /| - / 2: u(t) = -?/ пр)* Для обеспечения такого управления в состав системы должен быть включен релейный элемент.

Как и обычные системы, оптимальные системы бывают разомкнутыми, замкнутыми и комбинированными. Если оптимальное управление, переводящее ОУ из начального состояния в конечное и не зависящее или слабо зависящее от возмущающих воздействий, может быть задано как функция времени U = (/(/), то строится разомкнутая система программного управления (рис. 13.10, а).

В программное устройство ПУ закладывается оптимальная программа П, рассчитанная на достижение экстремума принятого критерия оптимальности. По такой схеме осуществляется управ-


Рис. 13.9.

а - с обшим управляющим устройством; б - с двухуровневым управляющим

устройством

Рис. 13.10. Схемы оптимальных систем: а - разомкнутой; б - комбинированной

ление станками с числовым программным управлением и простейшими роботами, производится вывод ракет на орбиту и т.д.

Наиболее совершенными, хотя и наиболее сложными, являются комбинированные оптимальные системы (рис. 13.10, б). В таких системах разомкнутый контур осуществляет оптимальное управление по заданной программе, а замкнутый контур, оптимизированный по минимуму ошибки, отрабатывает отклонение выходных параметров. Используя канат измерения возмущений /*, система становится инвариантной относительно всего множества задающих и возмущающих воздействий.

Для того чтобы реализовать столь совершенную систему управления, необходимо точно и быстро измерять все возмущаюшие воздействия. Однако такая возможность имеется далеко не всегда. Гораздо чаще о возмущающих воздействиях известны только усредненные статистические данные. Во многих случаях, особенно в системах телеуправления, даже задающее воздействие поступает в систему вместе с помехами. А так как помеха представляет собой в общем случае случайный процесс, то удается синтезировать только статистически оптимальную систему. Такая система не будет оптимальной для каждой конкретной реализации процесса управления, но она будет в среднем наилучшей для всего множества его реализаций.

Для статистически оптимальных систем в качестве критериев оптимальности используют усредненные вероятностные оценки. Например, для следящей системы, оптимизированной по минимуму ошибки, в качестве статистического критерия оптимальности используют математическое ожидание квадрата отклонения выходного воздействия от заданного значения, т.е. дисперсию:

Используются и другие вероятностные критерии. Например, в системе обнаружения целей, где важно только наличие или отсутствие цели, в качестве критерия оптимальности применяют вероятность ошибочного решения Р ош:

где Р п ц - вероятность пропуска цели; Р ЛО - вероятность ложного обнаружения.

Во многих случаях рассчитанные оптимальные САУ оказываются практически не реализуемыми ввиду их сложности. Как правило, требуется получение точных значений производных высоких порядков от входных воздействий, что технически очень трудно осуществимо. Зачастую даже теоретический точный синтез оптимальной системы оказывается невозможен. Однако методы оптимального проектирования позволяют строить квазиоптимальные системы, хотя и упрощенные в той или иной степени, но все- гаки позволяющие достичь значений принятых критериев оптимальности, близких к экстремальным.

Лекция 12.Оптимальные системы автоматического управления

Любая САУ в определенном смысле является оптимальной, т.к. в любом случае предпочтение одной системы перед другой означает, что выбранная система при определенных условиях в том или ином отношении лучше (оптимальнее) другой. Вместе с тем выделяют самостоятельную группу так называемых оптимальных (в том или ином смысле) САУ, понимая под этим термином такие системы, в которых реализуется закон управления по максимуму или минимуму значения выбранного, исходя из конкретных условий и задач управления, критерия оптимальности.

Очевидно, что может существовать большое разнообразие различных критериев, определяющих степень совершенства работы той или иной управляемой системы. Некоторые из этих показателей, как например, время переходного процесса (быстродействие), величина перерегулирования, статическая ошибка, установившаяся ошибка при медленных плавных изменениях входного воздействия были рассмотрены ранее.

Вообще говоря, все эти критерии качества важны для многих автоматических систем. Но часто в зависимости от устройства и назначения системы один из указанных (или иных) критериев качества может играть главную роль. Тогда при синтезе системы надо «выжать» из нее все, чтобы добиться максимума или минимума именно того показателя, который соответствует данному критерию. Остальные же показатели качества нужно при этом удерживать просто в допустимых по техническим требованиям пределах. Когда одинаково важны два каких-либо критерия, то составляется новый комбинированный показатель качества, максимум или минимум которого нужно обеспечить.

Оптимальной автоматической системой называется система, в которой закон управления выбран по максимум или минимуму того или иного показателя качества. При этом закон управления может быть либо линейным, либо нелинейным.

Наиболее общее выражение критерия оптимальности имеет вид интегрального функционала, зависящего от функции управления:

где Х(х 1 ,х 2 ,…х n) – вектор фазовых координат (вектор состояния); U(u 1 ,u 2 ,…u m) – вектор управления; t 0 , t k – время начала и конца управления.

Задачей теории оптимального управления является нахождение алгоритма, структуры и параметров системы управления, удовлетворяющих условиям оптимальности.

В оптимальной системе с линейным законом управления рассчитываются значения всех коэффициентов по максимуму или минимуму выбранного показателя качества, или же рассчитывается передаточная функция корректирующего устройства или фильтра (так называемый оптимальный линейный фильтр). В этом случае достигается максимум того, что может дать чисто линейная система.


Более широкими возможностями при оптимизации системы по тому или иному критерию обладают нелинейные законы управления. Введение нелинейностей в закон управления принципиально расширяет его возможности. То же самое касается и нелинейных корректирующих устройств и нелинейных фильтров. Однако расчет их структуры и параметров по максимуму или минимуму какого-либо показателя качества становится значительно сложнее.

В частности в оптимальных системах часто применяется релейный закон регулирования типа двухпозиционного или трехпозиционного, но с более сложным условием переключения:

U = C при f(х 1 ,х 2 ,…х n) > 0,

U = 0 при f(х 1 ,х 2 ,…х n) = 0,

U = - C при f(х 1 ,х 2 ,…х n) > 0,

где U – управляющее воздействие; С – заданная постоянная; х 1 ,х 2 ,…х n – обобщенные координаты системы, в которые могут входить отклонения управляемой величины и других переменных, характеризующих текущее состояние системы, а также их производные; f – функция переключения, которая может зависеть от начальных значений этих переменных и от характеристик задаваемого значения регулируемой величины в рассматриваемой САУ. Вид этой функции зависит как от выбранного показателя качества, так и от структуры и параметров системы в целом.

Во всех случаях оптимизации автоматической системы по тому или иному критерию должны учитываться реальные ограничения, всегда имеющиеся на практике, например, ограниченность запаса энергии, величины мощности, скорости, усиления, тока, емкости, допускаемой перегрузки, нагрева и т.п. Эти ограничения записываются в виде неравенств (например, dx/dt £ b), добавляемых к уравнениям динамики системы.

Используемый критерий качества тоже должен быть выражен либо непосредственно в виде функции от подлежащих выбору параметров закона управления, либо как подлежащий оптимизации результат решения уравнений динамики автоматической системы. Тогда задача сводится к отысканию максимума или минимума некоторого функционала.

Допустим, что требуется определить временную функцию x(t), удовлетворяющую заданным граничным условиям при t = 0 и t = T и обеспечивающую минимум интеграла следующего вида:

где F(x) – функция переменной х и производных d i x/dt i .

В этом случае можно положить х = где j i (t) - известные функции.

Для решения задачи требуется подобрать коэффициенты а i так, чтобы интеграл J достигал минимума.

Для такого определения x(t) обычно необходимо обследовать большое число коэффициентов а i . Если число таких коэффициентов невелико и при этом имеется лишь один минимум исходной функции, такая задача решается сравнительно просто. При других более общих условиях решение указанной задачи требует большого объема вычислений.

При построении оптимальных систем решаются следующие основные задачи: определение математической модели объекта управления; определение цели управления; выбор критерия оптимальности; оценка ограничений, накладываемых на параметры состояния и управления; выбор оптимального алгоритма работы управляющего устройства; схемная реализация управляющего устройства.

Автоматические системы, обеспечивающие наилучшие технические или технико-экономические показатели качества при заданных реальных условиях работы и ограничениях, называются оптимальными системами .
Оптимальные системы делятся на два класса:
- системы с "жесткой" настройкой, в которых неполнота информации не мешает достижению цели управления;
- адаптивные системы, в которых неполнота информации не позволяет достичь цели управления без автоматического приспособления системы в условиях неопределенности.
Цель оптимизации - математически выражается как требование обеспечения минимума или максимума некоторого показателя качества, называемого критерием оптимальности или целевой функцией. Основными критериями качества автоматических систем являются: стоимость разработки, изготовления и эксплуатации системы; качество функционирования (точность и быстродействие); надежность; потребляемая энергия; масса; объем и т.д.

Качество функционирования описывается функциональными зависимостями вида:

где u - координаты управления; x - фазовые координаты; f в - возмущения; t о и t к - начало и конец процесса.
При разработке оптимальных САУ необходимо учитывать ограничения, накладываемые на систему, которые бывают двух типов:
- естественные, обусловленные принципом работы объекта, например, скорость работы гидравлического сервомотора не может быть больше, чем при полностью открытых заслонках, скорость АД не может быть больше синхронной и т.д.;
- искусственные (условные), которые вводят сознательно, например, ограничения тока в ДПТ для нормальной коммутации, нагрева, ускорения для нормального самочувствия в лифте и т.д.
Критерии оптимальности могут быть скалярными, если представляются только одним частным критерием, и векторными (многокритериальными), если представляются рядом частных.
В качестве критерия оптимальности может быть принято время переходного процесса т.е. САУ оптимальная по быстродействию, если обеспечивается минимум этого интеграла с учетом ограничений. Принимаются также известные в ТАУ интегральные оценки качества переходного процесса, например, квадратичный. В качестве критерия оптимальности систем при случайных воздействиях используют среднее значение квадрата ошибки системы При управлении от источников с ограниченной мощностью берут функционал, характеризующий расход энергии на управление где u(t) и i(t) - напряжение и ток цепи управления. Иногда в качестве критерия оптимальности сложных САУ принимают максимум прибыли технологического процесса I= g i П i - S, где g i - цена продукта; П i - производительность; S - затраты.
По сравнению с менее строгими методами проектирования замкнутых САУ преимущества теории оптимизации состоят в следующем:
1). процедура проектирования является более четкой, т.к. включает в едином показателе проектирования все существенные аспекты качества;
2). очевидно проектировщик может ожидать получения наилучшего результата в соответствии с данным показателем качества. Поэтому для рассматриваемой задачи указывается область ограничений;
3). можно обнаружить несовместимость ряда требований качества;
4). процедура непосредственно включает в себя предсказание, т.к. оценка показателя качества производится по будущим значениям времени управления;
5). результирующая система управления будет адаптивной, если в процессе работы показатель проектирования переформулируется и попутно снова вычисляются параметры регулятора;
6). определение оптимальных нестационарных процессов не вносит каких-либо дополнительных трудностей;
7). непосредственно рассматриваются и нелинейные объекты, правда, при этом возрастает сложность вычислений.



Трудности, присущие теории оптимизации, состоят в следующем:
1). превращение различных требований проектирования в значимый на языке математики показатель качества непростая задача; здесь возможны пробы и ошибки;
2). существующие алгоритмы оптимального управления в случае нелинейных систем требуют сложных программ вычислений и, в ряде случаев, большого количества машинного времени;
3). показатель качества результирующей системы управления очень чувствителен к разного рода ошибочным предположениям и к изменениям параметров объекта управления.

Задача оптимизации решается в три этапа:
1). построение математических моделей физического процесса, а также требований качества. Математическая модель требований качества является показателем качества системы;
2). вычисление оптимальных управляющих воздействий;
3). синтез регулятора, формирующего оптимальные сигналы управления.

На рис.10.1 представлена классификация оптимальных систем.

Оптимальные системы – это системы, в которых заданное качество работы достигается за счет максимального использования возможностей объекта, иными словами это системы, в которых объект работает на пределе своих возможностей.

Оптимальная СУ – система управления, выбранная тем или иным способом и имеет наилучшие качества.

Оценка функции СУ производится по критерию оптимальности. Задачей теории оптимальности СУ является определение в общем виде законов управления объектом. По этим законам можно судить, что можно и чего нельзя достигнуть в реальных условиях. Классической постановкой задачи является задача определения оптимального алгоритма управления при наличии априорной информации (математического описания включающее ограничения наложенные на любые координаты системы) об объекте управления.

Рассмотрим апериодическое звено первого порядка

W (p) = K/(Tp+1) (1)

u ≤ A, (2)

для которого необходимо обеспечить минимальное время перехода у из начального состояния y (0) в конечноеy k . Переходная функция такой системы приK =1 выглядит следующим образом

Рис. 1.1. Переходная функция системы при U= const .

Рассмотрим ситуацию, когда на вход объекта подаем максимально возможное управляющее воздействие.

Рис.1.2. Переходная функция системы при U=A= const .

t 1 - минимально возможное время перехода y из нулевого состояния в конечное для данного объекта.

Для получения такого перехода существует два закона управления:

    программное управление

A, t < t 1

y k , t ≥ t 1 ;

    закон управления типа обратной связи

A, y < y k

y = (4)

y k , y ≥ y k ;

Второй закон более предпочтителен и позволяет обеспечить управление при помехах.

Рис. 1.3. Структурная схема системы с законом управления типа обратной связи.

Цель управления - требования, предъявленные к СУ.

    ограничения на входные параметры, например, допуски на изготовляемую продукцию, ошибки стабилизации управляемой величины,

    экстремальные условия (мах мощности или кпд, мин потери энергии),

    некоторые показатели качества (содержание вредных компонентов в конечном продукте)

Строгая формализация цели управления очень сложна из-за наличия подсистем

При формализации критерия необходимо учитывать факторы, влияющие на поведение СУ более высокого уровня. Например, при добыче полезного ископаемого – мах выхода товара. Но при этом ухудшается качество, т.е. необходимо учитывать заданное качество.

Таким образом, при выборе формализованного (математического) выражения критерия оптимальности необходимо учитывать:

1) критерий оптимальности должен отражать экономические показатели или величины с ними связанные.

2) для конкретной СУ учитывается только 1 критерий (если многокретериальная задачах то глобальный критерий- функция от частных критериев.

3) критерий должен быть связан с управляющими воздействиями, иначе он бесполезен.

4) критериальная функция иметь подходящую форму, желательно, чтоб критерий имел 1 экстремум,

5) информация, необходимая для критерия не должна быть избыточной. Это позволяет мах упростить систему измерительных устройств. И повысить надежность функционирования системы в целом.

Тестовые задания для самоконтроля

1. Управление это -

А) достижение избранных целей в практической деятельности

Б) достижение избранных целей в научной деятельности

В) достижение избранных целей в реальной действительности

Г) достижение избранных целей в теоретической деятельности

Д) достижение избранных целей в психологической деятельности

2. В теории управления возможна постановка скольких задач

3. Суть задачи управления заключается

А) в управлении объектом в процессе его функционирования без нашего непосредственного соучастия в процессе

Б) в управлении объектом в процессе его функционирования с нашим

непосредственном участии в процессе

Д) в управлении объектом в процессе его функционирования с помощью датчиков

4. Суть задачи самоуправления заключается

А) в управлении объектом в процессе его функционирования без нашего непосредственного соучастия в процессе

Б) в управлении объектом в процессе его функционирования с помощью датчиков

В) в управлении объектом в процессе его функционирования с помощью программы

Г) в управлении объектом в процессе его функционирования с помощью ЭВМ

Д) все ответы верны

5. На основании выбранного критерия оптимальности составляется

А) целевая функция

Б) зависимость параметров

В) целевая функция, представляющая собой зависимость критерия оптимальности от параметров, влияющих на ее значение

Г) зависимость параметров, влияющих на ее значение

Д) все ответы верны

В широком значении слово «оптимальный» означает наилучший в смысле некоторого критерия эффективности. При таком толковании любая научно обоснованная система является оптимальной, так как при выборе какой-либо системы подразумевается, что она в каком-либо отношении лучше других систем. Критерии, с помощью которых осуществляется выбор (критерии оптимальности), могут быть различными. Этими критериями могут являться качество динамики процессов управления, надежность системы, энергопотребление, ее вес и габариты, стоимость и т. п., либо совокупность этих критериев с некоторыми весовыми коэффициентами.

Ниже термин «оптимальный» используется в узком смысле, когда система автоматического управления оценивается лишь качеством динамических процессов и при этом критерием (мерой) этого качества выступает интегральный показатель качества. Такое описание критериев качества позволяет использовать для нахождения оптимального управления хорошо разработанный в математике аппарат вариационного исчисления.

Далее рассматривается два класса систем: системы программного управления, управляющее воздействие в которых не использует информацию о текущем состоянии объекта, и системы автоматического регулирования (системы стабилизации программного движения), действующие по принципу обратной связи.

Вариационные задачи, возникающие при построении оптимальных систем программного и стабилизирующего управления, формулируются в первой главе. Во второй главе излагается математическая теория оптимального управления (принцип максимума Л. С. Понтрягина и метод динамического программирования Р. Веллмана). Эта теория является фундаментом для построения оптимальных систем. Она доставляет большой объем информации о структуре оптимального управления. Свидетельством последнего являются оптимальные по быстродействию управления, которым посвящена третья глава. Вместе с тем практическое применение теории сталкивается с трудностями вычислительного характера. Дело в том, что математическая теория оптимального управления позволяет свести процесс построения оптимального управления к решению краевой задачи для дифференциальных уравнений (обыкновенных либо в частных производных).

Трудности численного решения краевых задач приводят к тому, что построение оптимальных управлений для каждого класса объектов управления является самостоятельной творческой задачей, решение которой требует учета специфических особенностей объекта, опыта и интуиции разработчика.

Эти обстоятельства побудили к отысканию классов объектов, для которых при построении оптимального управления краевая задача легко решается численно. Такими объектами управления оказались объекты, описываемые линейными дифференциальными уравнениями. Эти результаты, полученные А. М. Летовым и Р. Калманом, явились основой нового направления синтеза систем оптимальной стабилизации, называемого аналитическим конструированием регуляторов.

Аналитическому конструированию регуляторов, широко используемому при проектировании современных сложных систем стабилизации, посвящены четвертая и пятая главы.



Отчетность