Теплопроводность титана и алюминия. Титан металл. Свойства титана. Применение титана. Сферы использования хрома

1metal.com Металлургическая торговая площадка 1metal.com Краткая информация о Титан и его сплавы компаний Украины на металлоторгующей площадке 1metal.com 4.6 stars на основе 95

Титан и его сплавы

Титан широко распространен в земной коре, где его содержится около 6 %, а по распространенности он занимает четвертое место после алю-миния, железа и магния. Однако промышленный способ его извлечения был разработан лишь в 40-х годах ХХ века. Благодаря прогрессу в области самолето- и ракетостроения производство титана и его сплавов интенсивно развивалось. Это объясняется сочетанием таких ценных свойств титана, как малая плотность, высокая удельная прочность (s в /r × g ), коррозионная стойкость, технологичность при обработке давлением и свариваемость, хладостойкость, немагнитность и ряд других ценных физико-механических характеристик, приведенных ниже.

Характеристики физико-механических свойств титана (ВТ1-00)

Плотность r , кг/м 3

4,5 × 10 –3

Температура плавления Т пл , ° С

1668± 4

Коэффициент линейного расширения a × 10 –6 , град –1

8,9

Теплопроводность l , Вт/(м × град)

16,76

Предел прочности при растяжении s в, МПа

300–450

Условный предел текучести s 0,2 , МПа

250–380

Удельная прочность (s в /r × g )× 10 –3 , км

7–10

Относительное удлинение d , %

25–30

Относительное сужение Y , %

50–60

Модуль нормальной упругости Е´ 10 –3 , МПа

110,25

Модуль сдвига 10 –3 , МПа

41

Коэффициент Пуассона m ,

0,32

Твердость НВ

103

Ударная вязкость KCU, Дж/см 2

120

Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.

Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения - кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.

Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок:
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-Т В (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, Т В - твердый.

Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s в = 375–540 МПа, s 0,2 = 295–410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr-Ni коррозионностойких сталей.

Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с /а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).

При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300–600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.

Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) - почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.

Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO 2 , прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5–6 нм.

Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.

Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.

При технологических и эксплуатационных нагревах, особенно выше 550–600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).

Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.

Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.

Таблица 17.1

Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)

Ti, не менее

Твердость НВ,

10/1500/30, не более

Таблица 17.2

Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807–91)

Обозначения
марок

Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 - 0,10 %.

На формирование структуры и, следовательно, свойств титановых сплавов решающее влияние оказывают фазовые превращения, связанные с полиморфизмом титана. На рис. 17.1 представлены схемы диаграмм состояния «титан-легирующий элемент», отражающие подразделение легирующих элементов по характеру влияния на полиморфные превращения титана на четыре группы.

a -Стабилизаторы (Al, O, N), которые повышают температуру полиморфного превращения a « b и расширяют область твердых растворов на основе a -титана (рис. 17.1, а ). Учитывая охрупчивающее действия азота и кислорода, практическое значение для легирования титана имеет только алюминий. Он является основным легирующим элементом во всех промышленных титановых сплавах, уменьшает их плотность и склонность к водородной хрупкости, а также повышает прочность и модуль упругости. Сплавы с устойчивой a -структурой термической обработкой не упрочняются.

Изоморфные b -стабилизаторы (Mo, V, Ni, Ta и др.), которые понижают температуру a « b -пре-вращения и расширяют область твердых растворов на основе b -титана (рис. 17.1, б ).

Эвтектоидообразующие b -стабилизаторы (Cr, Mn, Cu и др.) могут образовывать с титаном интерметаллиды типа TiХ. В этом случае при охлаждении b -фаза претерпевает эвтектоидное превращение b ® a + TiХ (рис. 17.1, в ). Большинство
b -стабилизаторов повышает прочность, жаропрочность и термическую стабильность титановых сплавов, несколько снижая их пластичность (рис. 17.2.). Кроме того, сплавы с (a + b) и псевдо-b -структурой могут упрочняться термообработкой (закалка + старение).

Нейтральные элементы (Zr, Sn) не оказывают существенного влияния на температуру полиморфного превращения и не меняют фазового состава титановых сплавов (рис. 17.1, г ).

Полиморфное b ® a -превращение может происходить двумя путями. При медленном охлаждении и высокой подвижности атомов оно происходит по обычному диффузионному механизму с образованием полиэдрической структуры твердого a -раствора. При быстром охлаждении - по бездиффузионному мартенситному механизму с образованием игольчатой мартенситной структуры, обозначаемой a ¢ или при большей степени легированности - a ¢ ¢ . Кристаллическая структура a , a ¢ , a ¢ ¢ практически однотипная (ГПУ), однако решетка a ¢ и a ¢ ¢ более искажена, причем степень искаженности возрастает с увеличением концентрации легирующих элементов. Есть сведения [ 1] , что решетка a ¢ ¢ -фазы скорее ромбическая, чем гексагональная. При старении из фаз a ¢ и a ¢ ¢ выделяется b -фаза или интерметаллидная фаза.

Рис. 17.1. Диаграммы состояний систем «Тi-легирующий элемент» (схемы):
а ) «Тi-a -стабилизаторы»;
б ) «Тi-изоморфные b -стабилизаторы»;
в ) «Тi-эвтектоидообразующие b -стабилизаторы»;
г ) «Тi-нейтральные элементы»

Рис. 17.2. Влияние легирующих элементов на механические свойства титана

В отличие от мартенсита углеродистых сталей, являющегося раствором внедрения и характеризующегося высокой прочностью и хрупкостью, титановый мартенсит является раствором замещения, и закалка титановых сплавов на мартенсит a ¢ приводит к небольшому упрочнению и не сопровождается резким снижением пластичности.

Фазовые превращения, происходящие при медленном и быстром охлаждении титановых сплавов с различным содержанием b -стабилизаторов, а также получаемые структуры отражены на обобщенной диаграмме (рис. 17.3). Она справедлива для изоморфных b -стабилизаторов (рис. 17.1, б ) и, с некоторым приближением, для эвтектоидообразующих b -стабилизаторов (рис. 17.1, в ), так как эвтектоидный распад в этих сплавах происходит очень медленно, и им можно пренебречь.

Рис. 17.3. Схема изменения фазового состава сплавов «Ti-b -стабилизатор» в зависимости от скорости
охлаждения и закалки из b -области

При медленном охлаждении в титановых сплавах, в зависимости от концентрации b -стабилизаторов, могут быть получены структуры: a , a + b или b соответственно.

При закалке в результате мартенситного превращения в интервале температур М н –М к (на рис. 17.3 показаны пунктиром) следует различать четыре группы сплавов.

В первую группу входят сплавы с концентрацией b -стабилизирующих элементов до С 1 , т. е. сплавы, которые при закалке из b -области имеют исключительно a ¢ (a ¢ ¢)-структуру. После закалки этих сплавов с температур (a + b)-области в интервале от полиморфного превращения до Т 1 , их структура представляет собой смесь фаз a ¢ (a ¢ ¢), a и b , а после закалки с температур ниже Т кр они имеют (a + b)-структуру.

Вторую группу составляют сплавы с концентрацией легирующих элементов от С 1 до С кр, у которых при закалке из b -области мартенситное превращение не происходит до конца и они имеют структуру a ¢ (a ¢ ¢) и b . Сплавы этой группы после закалки с температур от полиморфного превращения до Т кр имеют структуру a ¢ (a ¢ ¢), a и b , а с температур ниже Т кр - структуру (a + b).

Закалка сплавов третьей группы с концентрацией b -стабилизирующих элементов от С кр до С 2 с температур b -области или с температур от полиморфного превращения до Т 2 сопровождается превращением части b -фазы в w -фазу, и сплавы этого типа после закалки имеют структуру (b + w). Сплавы третьей группы после закалки с температур ниже Т 2 имеют структуру (b + a).

Сплавы четвертой группы после закалки с температур выше полиморфного превращения имеют исключительно b -структуру, а с температур ниже полиморфного превращения - (b + a).

Необходимо отметить, что превращения b ® b + w может происходить как при закалке сплавов с концентрацией (С кр –С 2) , так и при старении сплавов с концентрацией более С 2 , имеющих метастабильную b -фазу. В любом случае, присутствие w -фазы нежелательно, так как она сильно охрупчивает титановые сплавы. Рекомендуемые режимы термообработки исключают ее присутствие в промышленных сплавах или появление в условиях эксплуатации.

Для титановых сплавов применяют следующие виды термообработки: отжиг, закалка и старение, а также химико-термическая обработка (азотирование, силицирование, оксидирование и др.).

Отжиг проводится для всех титановых сплавов с целью завершения формирования структуры, выравнивания структурной и концентрационной неоднородности, а также механических свойств. Температура отжига должна быть выше температуры рекрисаллизации, но ниже температуры перехода в b -состояние (Т пп) во избежание роста зерна. Применяют обычный отжиг, двойной или изотермический (для стабилизации структуры и свойств), неполный (для снятия внутренних напряжений).

Закалка и старение (упрочняющая термообработка) применима к титановым сплавам с (a + b)-структурой. Принцип упрочняющей термообработки заключается в получении при закалке метастабильных фаз b , a ¢ , a ¢ ¢ и последующем их распаде с выделением дисперсных частиц a - и b -фаз при искусственном старении. При этом эффект упрочнения зависит от типа, количества и состава метастабильных фаз, а также дисперсности образовавшихся после старения частиц a - и b -фаз.

Химико-термическая обработка проводится для повышения твердости и износостойкости, стойкости к «схватыванию» при работе в условиях трения, усталостной прочности, а также улучшения коррозионной стойкости, жаростойкости и жаропрочности. Практическое применение имеют азотирование, силицирование и некоторые виды диффузионной металлизации.

Титановые сплавы по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.

Марки и химический состав отечественных
сплавов (ГОСТ 19807–91) представлены в табл. 17.2.

По технологии изготовления титановые сплавы подразделяются на деформируемые и литейные ; по уровню механических свойств - на сплавы невысокой прочности и повышенной пластичности , средней прочности, высокопрочные ; по условиям применения - на хладостойкие, жаропрочные, коррозионностойкие. По способности упрочняться термообработкой они делятся на упрочняемые и неупрочняемые , по структуре в отожженном состоянии - на a -, псевдо-a -, (a + b)-, псевдо-b - и b -сплавы (табл. 17.3).

Отдельные группы титановых сплавов различаются по величине условного коэффициента стабилизации Кb , который показывает отношение содержания b -стабилизирующего легирующего элемента к его содержанию в сплаве критического состава с кр. При содержании в сплаве нескольких b -стабилизирующих элементов их Кb суммируется.

< 700 МПа, а именно: a -сплавы марок ВТ1-00, ВТ1-0 (технический титан) и сплавы ОТ4-0, ОТ4-1 (система Ti-Al-Mn), АТ3 (система Ti-Al c небольшими добавками Cr, Fe, Si, B), относящиеся к псевдо-a -сплавам с небольшим количеством b -фазы. Характеристики прочности этих сплавов выше, чем чистого титана благодаря примесям в сплавах ВТ1-00 и ВТ1-0 и незначительному легированию a - и b -стабилизаторами в сплавах ОТ4-0, ОТ4-1, АТ3.

Эти сплавы отличаются высокой пластичностью как в горячем, так и в холодном состоянии, что позволяет получать все виды полуфабрикатов: фольгу, ленту, листы, плиты, поковки, штамповки, профили, трубы и т. п. Механические свойства полуфабрикатов из этих сплавов приведены в табл. 17.4–17.6.

Таблица 17.3

Классификация титановых сплавов по структуре

Группа сплавов

Марка сплава

ВТ1-00, ВТ1-0, ВТ5, ВТ5-1, ПТ-7М

Псевдо-a -сплавы
(Кb < 0,25)

ОТ4-0, ОТ4-1, ОТ4, ВТ20, АТ3

(a + b)-Мартенситного класса (Кb = 0,3–0,9)

ВТ6С, ВТ6, ВТ14, ВТ8, ВТ9, ПТ-3В, ВТ3-1, АТ3

(a + b)-Сплавы переходного класса (Кb = 1,0–1,4)

Псевдо-b -сплавы (Кb = 1,5–2,4)

ВТ35*, ВТ32*, ВТ15

b -Сплавы (Кb = 2,5–3,0)

* Опытные сплавы.

Таблица 17.4

Механические свойства листов из титановых сплавов (ГОСТ 22178–76)

Марки титановых
сплавов

Состояние образцов
при испытаниях

Толщина листов,
мм

Предел прочности, s в, МПа

Относительное удлинение, d , %

Отожженное

Св. 6,0–10,5

Св. 6,0–10,5

Отожженное

Св. 6,0–10,5

Св. 6,0–10,5

Св. 6,0–10,5

885 (885–1080)

Отожженное

885 (885–1050)

Св. 5,0–10,5

835 (835–1050)

Закаленное и
искусственно
состаренное

Св. 7,0–10,5

Отожженное

930 (930–1180)

Св. 4,0–10,5

Отожженное
и правленное

980 (980–1180)

Св. 4,0–10,5

Примечание. В скобках приведены данные для листов с высокой отделкой поверхности.

Таблица 17.5

Механические свойства прутков из титановых сплавов (ГОСТ 26492–85)

Марка сплава

Состояние
испытываемых образцов

Диаметр прутка,

Предел
прочности s в,
МПа

Относительное
удлинение d ,
%

Относительное
сужение y ,

Ударная
вязкость KCU,
Дж/см 2

Отожженные

Отожженные

Отожженные

885 (905–1050)

835 (835–1050)

Закаленные и состаренные

Отожженные

Закаленные и состаренные

Отожженные

930 (980–1230)

930 (930–1180)

980 (980–1230)

930 (930–1180)

980 (1030–1230)

930 (980–1230)

Отожженные

885 (885–1080)

865 (865–1080)

Закаленные и состаренные

Отожженные

885 (930–1130)

885 (885–1130)

1030 (1080–1230)

1030 (1080–1280)

Примечание. В скобках приведены данные для прутков повышенного качества.

Таблица 17.6

Механические свойства плит из титановых сплавов (ГОСТ 23755–79)

Марка сплава

Состояние
материала

Толщина плит,

Предел прочности s в, МПа

Относительное удлинение d , %

Относительное сужение y , %

Ударная вязкость KCU, Дж/см 2

Без
термической обработки

Отожженное

Отожженное

Закаленное и состаренное

Отожженное

Без термической обработки

Ковка, объемная и листовая штамповка, прокатка, прессование производятся в горячем состоянии по режимам, указанным в табл. 17.7. Окончательная прокатка, листовая штамповка, волочение и другие операции производятся в холодном состоянии.

Эти сплавы и изделия из них подвергаются только отжигу по режимам, указанным в табл. 17.8. Для снятия внутренних напряжений, образовавшихся в результате механической обработки, листовой штамповки, сварки и др., применяется неполный отжиг.

Указанные сплавы хорошо свариваются сваркой плавлением (аргонодуговая, под флюсом, электрошлаковая) и контактной (точечная, роликовая). При сварке плавлением прочность и пластичность сварного соединения практически аналогичные основному металлу.

Коррозионная стойкость данных сплавов высокая во многих средах (морская вода, хлориды, щелочи, органические кислоты и т. п.), кроме растворов HF, H 2 SO 4 , HCl и некоторых других.

Применение. Эти сплавы широко применяются как конструкционные материалы для изготовления практически всех видов полуфабрикатов, деталей и конструкций, включая сварные. Наиболее эффективно их применение в авиационно-космической технике, в химическом машиностроении, в криогенной технике (табл. 17.9.), а также в узлах и конструкциях, работающих при температурах до 300–350 ° С.

К этой группе относятся сплавы с пределом прочности s в = 750–1000 МПа, а именно: a -спла-вы марок ВТ5 и ВТ5-1; псевдо-a -сплавы марок ОТ4, ВТ20; (a + b)-сплавы марок ПТ3В, а также ВТ6, ВТ6С, ВТ14 в отожженном состоянии.

Сплавы ВТ5, ВТ5-1, ОТ4, ВТ20, ПТ3В, ВТ6С, содержащие небольшое количество b -фазы (2–7 % b -фазы в равновесном состоянии), упрочняющей термообработке не подвергаются и используются в отожженном состоянии. Сплав ВТ6С иногда применяют в термически упрочненном состоянии. Сплавы ВТ6 и ВТ14 используют как в отожженном, так и в термически упрочненном состоянии. В последнем случае их прочность становится выше 1000 МПа, и они будут рассмотрены в разделе, посвященном высокопрочным сплавам.

Рассматриваемые сплавы, наряду с повышенной прочностью, сохраняют удовлетворительную пластичность в холодном состоянии и хорошую пластичность в горячем состоянии, что позволяет получать из них все виды полуфабрикатов: листы, ленту, профили, поковки, штамповки, трубы и др. Исключение составляет сплав ВТ5, из которого листы и плиты не изготавливают из-за невысокой технологической пластичности. Режимы горячей обработки давлением приведены в табл. 17.7.

На эту категорию сплавов приходится основной объем производства полуфабрикатов, применяемых в машиностроении. Механические характеристики основных полуфабрикатов приведены в табл. 17.4–17.6.

Все среднепрочные сплавы хорошо свариваются всеми видами сварки, применяемыми для титана. Прочность и пластичность сварного соединения, выполненного сваркой плавлением, близка к прочности и пластичности основного металла (для сплавов ВТ20 и ВТ6С это соотношение составляет 0,9–0,95). После сварки рекомендован неполный отжиг для снятия внутренних сварочных напряжений (табл. 17.8).

Обрабатываемость резанием этих сплавов хорошая. Коррозионная стойкость в большинстве агрессивных сред аналогична техническому титану ВТ1-0.

Таблица 17.7

Режимы горячей обработки давлением титановых сплавов

Марка сплава

Режим ковки слитков

Режим ковки предварительно
деформированных заготовок

Режим штамповки на прессе

Режим штамповки на молоте

Режим
листовой
штамповки

температура
деформации, ° С

толщина,
мм

температура
деформации,
° С

температура
деформации, ° С

температура
деформации, ° С

температура
деформации,
° С

окончание

окончание

окончание

окончание

Все
толщины

40–70
40–70

40–70
40–70

40–50**
70***

40–50**
70***

850
900–850

40–50**
70***

Все
толщины

* Степень деформации за один нагрев, %.

** Деформация в (a + b)-области.

*** Деформация в b -области.

Таблица 17.8

Режимы отжига титановых сплавов

Марка сплава

Температура отжига, ° С

Примечание

Листы
и детали
из них

Прутки, поковки, штамповки,
трубы, профили и детали из них

445–585 ° С*

445–585 ° С*

480–520 ° С*

520–560 ° С*

545–585 ° С*

Изотермический отжиг: нагрев до 870–920 ° С, выдержка, охлаждение до 600–650 ° С, охлаждение с печью или перенос в другую печь, выдержка 2 ч, охлаждение на воздухе

Двойной отжиг, выдержка при 550–600 ° С 2–5 ч. Для силовых деталей допускается отжиг при 850 ° С, охлаждение на воздухе

550–650 ° С*

Допускается отжиг по режимам: 1) нагрев до 850 ° С, выдержка, охлаждение с печью до 750 ° С, выдержка 3,5 ч, охлаждение на воздухе;

2) нагрев до 800 ° С, выдержка 30 мин, охлаждение с печью до 500 ° С, далее на воздухе

Двойной отжиг, выдержка при 570–600 ° С - 1 ч.

Допускается изотермический отжиг: нагрев до 920–950 ° С, выдержка, охлаждение с печью или перенос в другую печь с температурой 570–600 ° С, выдержка 1 ч, охлаждение на воздухе

Двойной отжиг, выдержка при 530–580 ° С - 2–12 ч.

Допускается изотермический отжиг: нагрев до 950–980 ° С, выдержка, охлаждение с печью или перенос в другую печь с температурой 530–580 ° С, выдержка 2–12 ч, охлаждение на воздухе

550–650 ° С*

Допускается изотермический отжиг: нагрев до 790–810 ° С, выдержка, охлаждение с печью или перенос в другую печь до 640–660 ° С, выдержка 30 мин, охлаждение на воздухе

Допускается отжиг листовых деталей при 650–750 ° С,

(600–650 ° С)*

(в зависимости от сечения и вида полуфабриката)

Охлаждение с печью со скоростью 2–4 ° С/мин до 450 ° С, затем на воздухе. Двойной отжиг, выдержка при 500–650 ° С 1–4 ч. Двойной отжиг допускается для деталей, работающих при температурах до 300 ° С и продолжительности до 2000 ч

(545–585 ° С *)

* Температуры неполного отжига.

Таблица 17.9

Механические характеристики титановых сплавов при низких температурах

s в (МПа) при температуре, ° С

d (%) при температуре, ° С

КСU, Дж/см 2 при температуре, ° С

Применение. Данные сплавы рекомендуется применять для изготовления изделий листовой штамповкой (ОТ4, ВТ20), для сварных деталей и узлов, для штампосварных деталей (ВТ5, ВТ5-1, ВТ6С, ВТ20) и др. Сплав ВТ6С широко применяется для изготовления сосудов и емкостей высокого давления. Детали и узлы из сплавов ОТ4, ВТ5 могут длительно работать при температурах до 400 ° С и кратковременно - до 750 ° С; из сплавов ВТ5-1, ВТ20 - длительно при температурах до 450–500 ° С и кратковременно - до 800–850 ° С. Сплавы ВТ5-1, ОТ4, ВТ6С также рекомендуются для применения в холодильной и криогенной технике (табл. 17.9).

К этой группе относятся сплавы с пределом прочности s в > 1000 МПа, а именно (a + b)-сплавы марок ВТ6, ВТ14, ВТ3-1, ВТ22. Высокая прочность в этих сплавах достигается упрочняющей термообработкой (закалка + старение). Исключение составляет высоколегированный сплав ВТ22, который даже в отожженном состоянии имеет s в > 1000 МПа.

Указанные сплавы наряду с высокой прочностью сохраняют хорошую (ВТ6) и удовлетворительную (ВТ14, ВТ3-1, ВТ22) технологическую пластичность в горячем состоянии, что позволяет получать из них различные полуфабрикаты: листы (кроме ВТ3-1), прутки, плиты, поковки, штамповки, профили и др. Режимы горячей обработки давлением приведены в табл. 17.7. Сплавы ВТ6 и ВТ14 в отожженном состоянии (s в » 850 МПа) могут подвергаться холодной листовой штамповке с малыми деформациями. Механические характеристики основных полуфабрикатов в отожженном и упрочненном состояниях приведены в табл. 17.4–17.6.

Несмотря на гетерофазность структуры, рассматриваемые сплавы обладают удовлетворительной свариваемостью всеми видами сварки, применяемыми для титана. Для обеспечения требуемого уровня прочности и пластичности обязательно проводят полный отжиг, а для сплава ВТ14 (при толщине свариваемых деталей 10–18 мм) рекомендуется проводить закалку с последующим старением. При этом прочность сварного соединения (сварка плавлением) составляет не менее 0,9 от прочности основного металла. Пластичность сварного соединения близка к пластичности основного металла.

Обрабатываемость резанием удовлетворительная. Обработку резанием сплавов можно проводить как в отожженном, так и в термически упрочненном состоянии.

Данные сплавы обладают высокой коррозионной стойкостью в отожженном и термически упрочненном состояниях во влажной атмосфере, морской воде, во многих других агрессивных средах, как и технический титан.

Термическая обработка. Сплавы ВТ3-1, ВТ6, ВТ6С, ВТ14, ВТ22 подвергаются закалке и старению (см. выше). Рекомендуемые режимы нагрева под закалку и старение для монолитных изделий, полуфабрикатов и сварных деталей приведены в табл. 17.10.

Охлаждение при закалке производится в воде, а после старения - на воздухе. Полная прокаливаемость обеспечивается для деталей из сплавов ВТ6, ВТ6С с максимальным сечением до 40–45 мм, а из сплавов ВТ3-1, ВТ14, ВТ22 - до 60 мм.

Для обеспечения удовлетворительного сочетания прочности и пластичности сплавов с (a + b)-структурой после закалки и старения необходимо, чтобы их структура перед упрочняющей термической обработкой была равноосной или «корзиночного плетения». Примеры исходных микроструктур, обеспечивающие удовлетворительные свойства, приведены на рис. 17.4 (1–7 типы).

Таблица 17.10

Режимы упрочняющей термической обработки титановых сплавов

Марка сплава

Температура полиморфного превращения Т пп, ° С

Температура
нагрева под закалку, ° С

Температура
старения, ° С

Продолжительность
старения, ч

Исходная игольчатая структура сплава с наличием границ первичного зерна b -фазы (8–9 типы) при перегреве после закалки и старения или отжига приводит к браку - сниженнию прочности и пластичности. Поэтому необходимо избегать нагрева (a + b)-сплавов до температур выше температуры полиморфного превращения, так как перегретую структуру исправить термической обработкой невозможно.

Нагрев при термической обработке рекомендуется производить в электрических печах с автоматической регулировкой и регистрацией температуры. Для предупреждения образования окалины нагрев готовых деталей и листов необходимо проводить в печах с защитной атмосферой или с применением защитных покрытий.

При нагреве под закалку тонких листовых деталей для выравнивания температуры и уменьшения коробления их на под печи укладывается стальная плита толщиной 30–40 мм. Для закалки деталей сложной конфигурации и тонкостенных деталей применяются фиксирующие приспособления для предупреждения коробления и поводки.

После проведения высокотемпературной обработки (закалки или отжига) в печи без защитной атмосферы полуфабрикаты, не подвергающиеся дальнейшей обработке, должны пройти гидропескоструйную обработку или обработку корундовым песком, а листовые изделия - еще и травление.

Применение. Высокопрочные титановые сплавы применяются для изготовления деталей и узлов ответственного назначения: сварные конструкции (ВТ6, ВТ14), турбины (ВТ3-1), штампосварные уз-лы (ВТ14), высоконагруженные детали и штампованные конструкции (ВТ22). Эти сплавы могут длительно работать при температурах до 400 ° С и кратковременно до 750 ° С.

Особенность высокопрочных титановых сплавов как конструкционного материала - их повышенная чувствительность к концентраторам напряжения. Поэтому при конструировании деталей из этих сплавов необходимо учитывать ряд требований (повышенное качество поверхности, увеличение радиусов перехода от одних сечений к другим и т. п.), аналогичных тем, которые существуют при применении высокопрочных сталей.

Титан - элемент IV группы побочной подгруппы периодической системы, порядковый номер 22, атомный вес 47,9. Химический знак - Ti. Титан открыт в 1795году и назван в честь героя греческого эпоса Титана. Он входит в состав более чем 70 минералов и является одним из распространенных элементов - содержание его в земной коре составляет примерно 0,6 %. Это металл серебристо-белой окраски. Его температура плавления равна 1665 °С. Коэффициент линейного расширения титана в интервале 20 – 100 °С составляет 8,3×10 -6 град -1 , а теплопроводность l = 15,4 Вт/(м×К). Он существует в двух полиморфных видоизменениях: до 882 °С в виде a-модификации, обладающей гексагональной плотно-упакованной кристаллической решеткой с параметрами а = 2,95 Å и с = 4,86 Å; а выше данной температуры устойчивой является b-трансформация с объемноцентрированной кубической решеткой (а = 3,31 Å).

Металл сочетает большую прочность с малой плотностью r = 4,5 г/см 3 и высокой коррозионной стойкостью. Благодаря этому во многих случаях он обладает значительными преимуществами перед такими основными конструкционными материалами, как сталь и алюминий. Однако из-за низкой теплопроводности затрудняется его применение для конструкций и деталей, работающих в условиях больших температурных перепадов, и при службе на термическую усталость. Металл обладает ползучестью как при повышенных, так и при комнатной температурах. К недостаткам титана как конструкционного материала следует отнести также относительно низкий модуль нормальной упругости.

Металл высокой чистоты обладает хорошими пластическими свойствами. Под влиянием примесей пластичность его резко изменяется. Кислород хорошо растворяется в титане и сильно снижает данную характеристику уже в области малых концентраций. Пластические свойства металла уменьшаются и при добавлении азота. При содержании азота более 0,2 % наступает хрупкое разрушение титана. Вместе с тем кислород и азот повышают временное сопротивление и выносливость металла. В этом отношении они являются полезными примесями.

Вредной примесью является водород. Он резко снижает ударную вязкость титана даже при очень малых концентрациях, за счет образования гидридов. На прочностные характеристики металла водород не оказывает заметного влияния в широком интервале концентраций.

Чистый титан не относится к жаропрочным материалам, так как прочность его резко уменьшается с повышением температуры.

Важной особенностью металла является его способность образовывать твердые растворы с атмосферными газами и водородом. При нагревании титана на воздухе на его поверхности, кроме обычной окалины, образуется слой, состоящий из твердого раствора на основе a-Ti (альфитированный), стабилизированного кислородом, толщина которого зависит от температуры и продолжительности нагрева. Он имеет более высокую температуру превращения, чем основной слой металла, и его образование на поверхности деталей или полуфабрикатов может вызвать хрупкое разрушение.


Титан характеризуется значительной коррозионной стойкостью в атмосфере воздуха, естественной холодной, горячей пресной и морской воде, растворах щелочей, солей неорганических и органических кислот и соединений даже при кипячении. Он стоек по отношению к разбавленным серной, соляной (до 5 %), азотной всех концентраций (кроме дымящейся), уксусной и молочной кислотам, хлоридам и царской водке. Высокая коррозионная стойкость титана объясняется образованием на его поверхности плотной однородной защитной пленки, состав которой зависит от окружающей среды и условий ее образования. В большинстве случаев это диоксид - TiO 2 . При определенных условиях металл, взаимодействующий с соляной кислотой, может покрываться защитным слоем гидрида - TiH 2 . Титан устойчив против кавитационной коррозии и коррозии под напряжением.

Начало промышленного применения титана как конструкционного материала относится к сороковым годам прошлого столетия. В данном качестве титан наибольшее применение находит в авиации, ракетной технике, при сооружении морских судов, в приборостроении и машиностроении. Он сохраняет высокие прочностные характеристики при повышенных температурах и поэтому с успехом применяется для изготовления деталей, подвергающихся высокотемпературному нагреву.

В настоящее время титан широко применяют в металлургии, в том числе в качестве легирующего элемента в нержавеющих и жаростойких сталях. Добавки титана в сплавы алюминия, никеля и меди повышают их прочность. Он является составной частью твердых сплавов для режущих инструментов. Двуокись титана используют для обмазки сварочных электродов. Четыреххлористый титан применяют в военном деле для создания дымовых завес.

В электротехнике и радиотехнике используют порошкообразный титан в качествепоглотителя газов - при нагревании до 500 °С он энергично абсорбирует газы и тем самым обеспечивает в замкнутом объеме высокий вакуум. В связи с этим его применяют для изготовления деталей электронных ламп.

Титан в ряде случаев является незаменимым материалом в химической промышленности и в судостроении. Из него делают детали, предназначенные для перекачки агрессивных жидкостей, теплообменники, работающие в коррозионно-активных средах, подвесные приспособления, используемые при анодировании различных деталей. Титан инертен в электролитах и других жидкостях, применяемых в гальваностегии, и поэтому пригоден для производства различных деталей гальванических ванн. Его широко употребляют при изготовлении гидрометаллургической аппаратуры для никелево-кобальтовых заводов, так как он обладает высокой стойкостью против коррозии и эрозии в контакте с никелевыми и кобальтовыми шламами при больших температурах и давлениях.

Титан наиболее стоек в окислительных средах. В восстановительных средах он корродирует довольно быстро вследствие разрушения защитной окисной пленки.

Сплавы титана с различными элементами являются более перспективными материалами, чем технически-чистый металл.

Основными легирующими компонентами промышленных титановых сплавов являются ванадий, молибден, хром, марганец, медь, алюминий и олово. Практически же титан образует сплавы со всеми металлами, за исключением щелочноземельных элементов, а также с кремнием, бором, водородом, азотом и кислородом.

Наличие полиморфных превращений титана, хорошая растворимость многих элементов в нем, образование химических соединений, обладающих переменной растворимостью, позволяют получить широкую гамму титановых сплавов с разнообразными свойствами.

Они обладают тремя основными преимуществами по сравнению с другими сплавами: малым удельным весом, высокими химическими свойствами и отличной коррозионной стойкостью. Сочетание легкости с большой прочностью делают их особенно перспективными материалами как заменители специальных сталей для авиационной промышленности, а значительная коррозионная стойкость - для судостроения и химической промышленности.

Во многих случаях применение титановых сплавов оказывается экономически выгодным, несмотря на высокую стоимость титана. Например, применение литых титановых насосов с высочайшей коррозионной стойкостью на одном из предприятий России позволило снизить эксплуатационные расходы на один насос в 200 раз. Таких примеров можно привести немало.

В зависимости от характера влияния, оказываемого легирующими элементами на полиморфные превращения титана при сплавлении, все сплавы делятся на три группы:

1) с a-фазой (алюминий);

2) с b-фазой (хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт, ванадий, молибден, ниобий и тантал);

3) с a + b-фазами (олово, цирконий германий).

Сплавы титана с алюминием имеют меньшую плотность и большую удельную прочность, чем чистый или технически чистый титан. По удельной прочности они превосходят многие нержавеющие и теплостойкие стали в интервале 400 - 500 °С. Эти сплавы обладают более высокой жаропрочностью и наивысшим сопротивлением ползучести, чем многие другие на основе титана. Они также имеют повышенный модуль нормальнойупругости. Сплавы не подвергаются коррозии и слабо окисляются при высоких температурах. Они обладают хорошей свариваемостью, причем даже при значительном содержании алюминия материал шва и околошовной зоны не приобретает хрупкости. Добавка алюминия уменьшает пластичность титана. Наиболее интенсивно это влияние сказывается при содержании алюминия более 7,5 %. Добавка олова в сплавы повышает их прочностные характеристики. При концентрации в них до 5 % Sn заметного снижения пластических свойств не наблюдается. Кроме того, введение олова в сплавы повышает их сопротивляемость окислению и ползучести. Сплавы, содержащие 4 - 5 % Аl и 2 – 3 % Sn, сохраняют значительную механическую прочность до 500 °С.

Цирконий не оказывает большого влияния на механические свойства сплавов, но его присутствие способствует увеличению сопротивления ползучести и повышению длительной прочности. Цирконий является ценным компонентом титановых сплавов.

Сплавы данного типа достаточно пластичны: прокатываются, штампуются и куются в горячем состоянии, свариваются аргоно-дуговой и контактной сваркой, удовлетворительно обрабатываются резанием, обладают хорошей коррозионной стойкостью в концентрированной азотной кислоте, в атмосфере, растворах поваренной соли при цикличных нагрузках и морской воде. Они предназначаются для изготовления деталей, работающих при температурах от 350 до 500 °С при длительных нагрузках и до 900 °С при кратковременных нагрузках. Сплавы поставляются в виде листов, прутков, полос, плит, поковок, штамповок, прессованных профилей, труб и проволоки.

При комнатной температуре они сохраняют кристаллическую решетку, присущую модификации a-титана. В большинстве случаев эти сплавы применяют в отожженном состоянии.

К титановым сплавам с термодинамически устойчивой b-фазой относятся системы, содержащие в своем составе алюминий (3,0 - 4,0 %), молибден (7,0 - 8,0 %) и хром (10,0 - 15,0 %). Однако при этом теряется одно из основных преимуществ титановых сплавов - относительно малая плотность. Это является основной причиной того, что данные сплавы не получили широкого распространения. После закалки с 760 - 780 °С и старения при 450 - 480 °С они имеют временное сопротивление 130 – 150 кГ/мм 2 , это эквивалентно стали с s в = 255 кГ/мм 2 . Однако эта прочность не сохраняется при нагревании, что является основным недостатком указанных сплавов. Они поставляются в виде листов, прутков и поковок.

Наилучшее сочетание свойств достигается в сплавах, состоящих из смеси a- и b-фaз. Непременным компонентом в них является алюминий. Содержание алюминия не только расширяет область температур, при которых сохраняется стабильность a-фазы, но и повышает термическую устойчивость b-составляющей. Кроме того, этот металл уменьшает плотность сплава и тем самым компенсирует увеличение данного параметра, связанное с введением тяжелых легирующих элементов. Они обладают хорошей прочностью и пластичностью. Из них изготовляют листы, прутки, поковки и штамповки.Детали из таких сплавов можно соединять точечной, стыковой и аргоно-дуговой сваркой в защитной атмосфере. Они удовлетворительно обрабатываются резанием, обладают высокой коррозионной стойкостью во влажной атмосфере и в морской воде, обладают хорошей термической стабильностью.

Иногда, кроме алюминия и молибдена, в сплавы добавляется небольшое количество кремния. Это способствует тому, что сплавы в горячем состоянии хорошо поддаются прокатке, штамповке и ковке, а также увеличивается сопротивление ползучести.

Широкое применение находит карбид титана TiC и сплавы на его основе. Карбид титана обладает большой твердостью и очень высокой темпера­турой плавления, что и определяет основные области его применения. Его давно применяют как компонент твердых сплавов для режущих инструментов и штампов. Типичными титансодержащими твердыми сплавами для режущего инструмента являются сплавы Т5К10, Т5К7, Т14К8, Т15К6, ТЗ0К4 (первая цифра соответствует содержанию карбида титана, а вторая - концентрации цементирующего металлического кобальта в %). Карбид титана применяют также в качестве абразивного материала как в порошке, так и в цементированном виде. Его температура плавления выше 3000 °С. Он обладает большой электропроводностью, а при низких температурах - сверхпроводимостью. Ползучесть данного соединения мала вплоть до 1800 °С. При комнатной температуре он хрупок. Карбид титана стоек в холодных и горячих кислотах - соляной, серной, фосфорной, щавелевой, на холоде - в хлорной кислоте, а также в их смесях.

Большое распространение получили жаростойкие материалы на основе карбида титана, легированного молибденом, танталом, ниобием, никелем, кобальтом и другими элементами. Это позволяет получить материалы, в которых сочетаются большая прочность, сопротивляемость ползучести и окислению при высоких температурах карбида титана с пластичностью и сопротивлением тепловому удару металлов. На этом же принципе основано получение жаростойких материалов на основе других карбидов, а также боридов, силицидов, которые объединяются под общим названием керамико-металлических материалов.

Сплавы на основе карбида титана сохраняют достаточно высокую жаропрочность до 1000 – 1100 °С. Они обладают высокой износоустойчивостью и стойкостью против коррозии. Ударная вязкость сплавов мала, и это является основным препятствием для широкого их распространения.

Карбид титана и сплавы на его основе с карбидами других металлов применяют в качестве огнеупорных материалов. Тигли из карбида титана и сплава его с карбидом хрома не смачиваются и практически не взаимодействуют в течение длительного времени с расплавленным оловом, висмутом, свинцом, кадмием и цинком. Не смачивают карбид титана расплавленная медь при 1100 - 1300 °С и серебро при 980 °С в вакууме, алюминий при 700 °С в атмосфере аргона. Сплавы на основе карбида титана с карбидом вольфрама или тантала с добавкой до 15 % Со при 900 – 1000 °С в течение длительного времени почти не поддаются действию расплавленного натрия и висмута.

Титан – один из загадочных, малоизученных макроэлементов в науке и жизни человека. Хотя его не зря называют «космическим» элементом, т.к. он активно применяется в передовых отраслях науки, техники, медицины и во многом другом – это элемент будущего.

Этот металл серебристо-серого цвета (см. фото), не растворим в воде. Он у него небольшая химическая плотность, поэтому ему характерна легкость. В то же время он очень прочен и легко поддается обработке из-за своей плавкости и пластичности. Элемент химически инертен благодаря наличию на поверхности защитной пленки. Титан не горюч, но его пыль взрывоопасна.

Открытие этого химического элемента принадлежит большому любителю минералов англичанину Уильяму Мак-Грегору. Но своим названием титан обязан все же химику – Мартину Генриху Клапроту, который обнаружил его независимо от Мак-Грегора.

Предположения о причинах, по которым этот металл назвали «титаном» романтичны. По одной версии, название связано с древнегреческими богами Титанами, родителями которых являлись бог Уран и богиня Гея, а вот согласно второй, оно происходит от имени королевы фей – Титании.

Как бы там ни было, этот макроэлемент девятый по нахождению в природе. Он входит в состав тканей представителей флоры и фауны. Много его в морской воде (до 7%), а вот в почве его содержится всего 0,57%. Наиболее богат запасами титана Китай, за ним идет Россия.

Действие титана

Действие макроэлемента на организм обусловлено его физико-химическими свойствами. Его частицы очень малы, они могут проникать в клеточную структуру и влиять на ее работу. Считается, что из-за своей инертности макроэлемент не взаимодействует химически с раздражителями, и поэтому не токсичен. Однако он вступает в связь с клетками тканей, органов, крови, лимфы посредством физического действия, что приводит к их механическому повреждению. Так, элемент может своим действием привести к повреждению одно- и двухцепочной ДНК, повредить хромосомы, что может привести к риску развития рака и сбоя в генетическом коде.

Выяснилось, что частицы макроэлемента не способны пройти через кожу. Поэтому попадают они внутрь человека только с едой, водой и воздухом.

Титан лучше усваивается через желудочно-кишечный тракт (1-3%), а вот через дыхательные пути всасывается только около 1%, однако содержание его в организме сконцентрировано как в легких (30%). С чем это связано? Проанализировав все вышеуказанные цифры, можно прийти к нескольким выводам. Во-первых, титан вообще плохо усваивается организмом. Во-вторых, через ЖКТ идет выведение титана через кал (0,52 мг) и мочу (0,33 мг), а вот в легких такой механизм слабый или вовсе отсутствует, так как с возрастом у человека концентрация титана в этом органе возрастает практически в 100 раз. Чем же обусловлена такая большая концентрация при таком слабом всасывании? Скорее всего, это связано с постоянной атакой на наш организм пыли, в которой всегда присутствует титановая составляющая. Кроме того в данном лучае нужно учитывать нашу экологию и наличие промышленных мощностей вблизи населенных пунктов.

По сравнению с легкими, в остальных органах, таких как селезенка, надпочечники, щитовидная железа, содержание макроэлемента на протяжении всей жизни остается неизменным. Также присутствие элемента наблюдается в лимфе, плаценте, головном мозге, женском грудном молоке, костях, ногтях, волосах, хрусталике глаза, тканях эпителия.

Находясь в костях, титан участвует в их срастании после переломов. Также положительное действие наблюдается в восстановительных процессах, происходящих в поврежденных подвижных соединениях костей при артритах и артрозах. Этот металл является сильным антиоксидантом. Ослабляя действие свободных радикалов на клетки кожи и крови, он защищает весь организм от преждевременного старения и изнашивания.

Концентрируясь в отделах мозга, отвечающих за зрение и слух, положительно влияет на их функционирование. Нахождение металла в надпочечниках и щитовидной железе подразумевает его участие в вырабатывании гормонов, участвующих в обмене веществ. Он также задействован в выработке гемоглобина, выработке эритроцитов. Снижая в крови содержание холестерина и мочевины, следит за ее нормальным составом.

Негативное действие титана на организм связано с тем, что он является тяжелым металлом . Попадая в организм, он не расщепляется и не разлагается, а оседает в органах и тканях человека, отравляя его и вмешиваясь в процессы жизнедеятельности. Он не подвержен коррозии и устойчив к действию щелочей и кислот, поэтому желудочный сок не способен на него воздействовать.

Соединения титана имеют способность не пропускать коротковолновое ультрафиолетовое излучение и не всасываются через кожу, поэтому их можно использовать для защиты кожи от ультрафиолета.

Доказано, что курение увеличивает поступление металла в легкие из воздуха во много раз. Это ли не повод бросить эту вредную привычку!

Суточная норма - какова потребность в химическом элементе?

Суточная норма макроэлемента обусловлена тем, что в теле человека содержится примерно 20 мг титана, из них 2,4 мг – в легких. Каждый день с пищей организм приобретает 0,85 мг вещества, с водой – 0,002 мг, а с воздухом – 0,0007 мг. Суточная норма для титана очень условна, так как последствия его влияния на органы до конца не изучено. Приблизительно она равняется около 300-600 мкг в сутки. Нет никаких клинических данных о последствиях превышения этой нормы – все на стадии опытных исследований.

Недостаток титана

Состояния, при которых бы наблюдался недостаток металла, не выявлены, поэтому ученые пришли к выводу, что их в природе не существует. Но его дефицит наблюдается при большинстве тяжелых заболеваний, что может ухудшить состояние больного. Этот недостаток можно убрать титаносодержащими препаратами.

Влияние избытка титана на организм

Избыток макроэлемента единоразового поступления титана в организм не выявлен. Если, предположим, человек проглотил титановый штифт, то, по всей видимости, об отравлении говорить не приходится. Скорее всего, из-за своей инертности элемент не вступит в контакт, а выведется естественным путем.

Большую опасность вызывает систематическое увеличение концентрации макроэлемента в органах дыхания. Это приводит к повреждению дыхательной и лимфатической систем. Также есть непосредственная связь между степенью протекания силикоза и содержанием элемента в органах дыхания. Чем больше его содержание, тем тяжелее протекает болезнь.

Избыток тяжелого металла наблюдается у людей, работающих на химических и металлургических предприятиях. Наиболее опасен хлорид титана – за 3 рабочих года начинается проявление тяжелых хронических заболеваний.

Такие заболевания лечат специальными препаратами и витаминами.

Каковы источники?

Элемент попадает в организм человека в основном с пищей и водой. Больше всего его в бобовых (горох, фасоль, чечевица, бобы) и в злаковых (рожь, ячмень, гречка, овес). Выявлено его присутствие в молочных и мясных блюдах, а также в яйцах. В растениях сконцентрировано больше этого элемента, чем в животных. Особенно высоко его содержание в водоросли – кустистой кладофоре.

Во всех продуктах питания, где присутствует пищевой краситель Е171, содержится диоксид этого металла. Его применяют в изготовлении соусов и приправ. Вред этой добавки находится под вопросом, так как оксид титана практически не растворим в воде и желудочном соке.

Показания к применению

Показания к применению элемента, несмотря на то, что этот космический элемент еще мало изучен, есть, он активно применяется во всех сферах медицины. Из-за своей прочности, коррозионной стойкости и биологической инертности, он широко применяется в сферах протезирования для изготовления имплантантов. Его применяют в стоматологии, нейрохирургии, ортопедии. Благодаря долговечности из него изготавливают хирургические инструменты.

Диоксид этого вещества используют в лечении болезней кожи, таких как хейлит, герпес, угревая сыпь, воспаление слизистой рта. Им удаляют гемангиому лица.

Никелид металла задействован в устранении местно-распространенного рака гортани. Его используют для эндопротезирования гортани и трахеи. Также он применяется для лечения инфицированных ран в сочетании с растворами антибиотиков.

Аквакомплекс глицеросольвата макроэлемента способствует заживлению язвенных ран.

Для ученых по всему миру открыто много возможностей для изучения элемента будущего, так как его физико-химические свойства высоки и могут принести безграничную пользу для человечества.

Титановые сплавы. Основные характеристики

Важнейшими преимуществами титановых сплавов перед другими конструкционными материалами являются их высокие удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Кроме того, титан и его сплавы хорошо свариваются, парамагнитны и обладают некоторыми другими свойствами, имеющими важное значение в ряде отраслей техники. Перечисленные качества титановых сплавов открывают большие перспективы их применения в тех областях машиностроения, где требуются высокая удельная прочность и жаропрочность в сочетании с высокой коррозионной стойкостью. Это относится, в первую очередь, к таким отраслям техники как авиастроение, ракетостроение, судостроение, химическое, пищевое и транспортное машиностроение.

Касаясь некоторых специфических свойств титана, можно отметить, что он представляет большой интерес как конструкционный материал для космических кораблей.

Классификация

Титановые сплавы целесообразно разделить на три большие группы:

Конструкционные и высокопрочные титановые сплавы представляют собой - твердые растворы, что позволяет им обеспечивать оптимальное соотношение характеристик прочности и пластичности.

Жаропрочные титановые сплавы представляют собой - твердые растворы с большим или меньшим количеством химического соединения (или начальной стадии его образования), что обеспечивает им повышенную жаропрочность при минимальном снижении пластичности.

Титановые сплавы на основе химического соединения - представляют интерес как жаропрочный материал с низкой плотностью, способный конкурировать с жаропрочными никелиевыми сплавами в определенном температурном интервале.

В настоящее время титан - один из важнейших конструкционных металлических материалов. Для этого титану в течение 200 лет пришлось пройти путь от признания его непригодным в конструкционных целях до всеобщего поклонения как перед одним из самых перспективных и вечных металлов.

ВТ1-00 и ВТ1-0

Технический титан. Металлургическая промышленность поставляет полуфабрикаты технического титана двух марок ВТ1 - 00 и ВТ1 - 0 отличающихся содержанием примесей (кислорода, азота, углерода, железа, кремния и др.). Это материалы малой прочности, причем титан ВТ1 - 00, содержащий меньше примесей, отличается меньшей прочностью и большей пластичностью. Основное достоинство технического титана - высокая технологическая пластичность, что позволяет получать из него даже фольгу.

Прочностные свойства титана могут быть повышены нагартовкой но при этом сильно снижаются пластические свойства. Снижение характеристик пластичности выражено сильнее, чем повышение характеристик прочности, так что нагартовка не самый лучший способ улучшения комплекса свойств титана. К недостаткам титана следует отнести высокую склонность к водородной хрупкости, в связи с чем содержание водорода не должно превышать 0,008 % в титане ВТ1 - 00 и 0,01 % в ВТ1 - 0.

Сплав ВТ5 (ВТ5Л)

Сплав ВТ5 (ВТ5Л) легирован только алюминием. Алюминий относится к числу наиболее распространенных легирующих элементов в титановых сплавах. Это обусловлено следующими преимуществами алюминия перед остальными легирующими компонентами:

а) алюминий широко распространен в природе, доступен и сравнительно дешев;

б) плотность алюминия значительно меньше плотности титана, и поэтому введение алюминия повышает их удельную прочность;

в) с увеличением содержания алюминия повышается жаропрочность и сопротивление ползучести сплавов титана;

г) алюминий повышает модули упругости;

д) с увеличением содержания алюминия в сплавах уменьшается их склонность к водородной хрупкости. Сплав ВТ5 отличается от технического титана большей прочностью и жаропрочностью. Вместе с тем алюминий значительно уменьшает технологическую пластичность титана. Сплав ВТ5 деформируется в горячем состоянии: куется, прокатывается, штампуется. Из него изготовляют прутки, профили, поковки, штамповки. Тем не менее, его предпочитают применять не в деформированном состоянии, а в виде фасонного литья (в этом случае ему присваивают марку ВТ5Л). Сплав предназначен для изготовления деталей систем управления, внутреннего набора фюзеляжа, сварных деталей и узлов, длительно работающих (10 000 ч) при температурах до 400 °С.

Сплав ВТ5-1

Сплав ВТ5-1 относится к системе Ti-Al-Sn. Олово улучшает технологические свойства сплавов титана с алюминием, замедляет их окисление, повышает сопротивление ползучести. Этот сплав, по прочностным характеристикам относится к материалам средней прочности, мало чувствителен к надрезу, имеет удовлетворительный предел выносливости, сохраняет значительную жаропрочность до 450 °С. Сплав ВТ5-1 более технологичен, чем ВТ5, и из него изготавливают все виды полуфабрикатов, получаемых обработкой давлением, в том числе: листы, плиты, поковки, штамповки, профили, трубы и проволоку. Сплав сваривается всеми видами сварки, причем сварные соединения и основной металл почти равнопрочны. Сплав термически не упрочняется. При применении этого сплава для работы при криогенных температурах содержание примесей должно быть сведено к минимуму, так как они вызывают хладноломкость, состав сплава с пониженным содержанием примесей обозначают ВТ5-1кт. За рубежом сплав Ti-5A1-2,5Sn аналогично применяют в двух вариантах: для обычного назначения и для работы при криогенных температурах. Во втором случае также ограничивают содержание примесей и обозначают сплав как Ti-5AI-2,5Sn ELI.

Сплав ПТ-7М

Сплав ПТ-7М относится к малолегированным, малопрочным и высокопластичным сплавам системы Ti-Al-Zr. Он довольно легко деформируется не только при повышенных, но и комнатной температуре, что обусловлено небольшим содержанием в нем алюминия. Сплав производится в основном в форме горячепрессованных, горячекатаных и холоднодеформированных труб. Высокая пластичность сплава позволяет получать из него особо тонкостенные трубы. Сплав ПТ-7М применяют в основном для изготовления различного рода трубопроводов, работающих при комнатной и повышенных температурах в агрессивных средах.

Сплав ОТ4-0

Сплав ОТ4-0 малой прочности и высокой технологичности. Марганец повышает технологичность при горячей обработке давлением. Сплав псевдо- α -класса с небольшим количеством β-фазы. Термически не упрочняется. Основными полуфабрикатами являются: листы, ленты, полосы, прутки, поковки, штамповки. Хорошо деформируется в горячем и холодном состояниях, допускает штамповку при комнатной температуре; хорошо сваривается всеми видами сварки. Используется в деталях для изготовления которых требуется высокая технологичность при холодной штамповке.

Сплав ОТ4-1

Сплав ОТ4-1 относится к числу наиболее технологичных титановых сплавов; является малопрочным, малолегированным псевдо а-сплавом системы Ti-Al-Mn. Он хорошо деформируется в горячем и холодном состояниях и предназначен в основном для изготовления листов, лент и полос. Из них получают также плиты, поковки, прутки, трубы и профили. Листовая штамповка деталей простой формы может производиться в холодном состоянии; при штамповке деталей сложной формы необходим подогрев до 500°С. Сплав хорошо сваривается всеми видами сварки, причем прочность и пластичность сварного соединения практически одинаковы с основным металлом. Сплав ОТ4-1 предназначен для изготовления деталей, работающих до температуры 350 °С в течение не более 2000 ч и до 300 °С - не более 30 000 ч и изготавливаемых с применением сварки, штамповки и гибки. В отожженном состоянии сплав ОТ4-1 применяется для изготовления деталей типа обшивок крыла, закрылков, внутреннего набора крыла. Полный отжиг проводится при 640-690°С (листовые полуфабрикаты и детали из них) и при 740-790°С (прутки, поковки, штамповки и т.п. и детали из них); неполный отжиг - при 520-560°С. Недостатки этого сплава: сравнительно невысокая прочность; очень большая склонность к водородной хрупкости (содержание водорода не должно превышать 0,005%).

Псевдо α -сплав ОТ4

Псевдо α -сплав ОТ4 относится к той же системе Ti-A1-Мп, что и ОТ4-1, но отличается от него большим содержанием алюминия. В связи с этим он прочнее сплава ОТ4-1. Этот сплав средней прочности. Вместе с тем сплав ОТ4 менее пластичен и технологичен, чем сплав ОТ4-1. Сплав хорошо деформируется в горячем и ограниченно холодном состояниях. Его поставляют в виде листов, плит, профилей, труб, прутков. Основные операции листовой штамповки (вытяжка, гибка, отбортовка) осуществляются в холодном состоянии. При штамповке сложных по конфигурации деталей требуется подогрев. Сплав ОТ4 хорошо сваривается аргонодуговой, контактной (точечной, роликовой, стыковой) и электронно-лучевой сваркой. Сплав обладает хорошей термической стабильностью и предназначен для изготовления деталей, работающих при температурах до 350°С в течение 2000 ч и до 300°С - 30 000 ч. Сплав термически не упрочняется, единственный вид термической обработки, которому он подвергается, это полный или неполный (для снятия остаточных напряжений) отжиг. Полный отжиг проводят при 660-710°С (листовые полуфабрикаты и детали из них) и при 740-790°С (прутки, поковки, штамповки и т.п. и детали из них); неполный отжиг - при 545-585 °С.

Сплав ВТ18 (ВТ18У)

Сплав ВТ18 (ВТ18У) системы Ti-Al-Zr-Mo-Nb-Si относится к высокопрочным псевдо α -сплавам. Большое содержание алюминия и циркония обеспечивает высокое сопротивление ползучести и высокую длительную прочность до температур 550 - 600°С. Это один из наиболее жаропрочных титановых сплавов. Пластические свойства и технологичность при обработке давлением у сплава ВТ18 ниже, чем у сплавов типа ОТ4. Поэтому он предназначен в основном для производства прутков, поковок и штамповок.
Оптимальное сочетание свойств сплава обеспечивает отжиг при температурах 900 - 950 °С, выдержка 1 - 4 ч, охлаждение на воздухе. Помимо этого применяют двойной отжиг: при 900 - 980 °С 1 - 4 ч + при 550 - 680 °С 2 - 8 ч, что позволяет получить более высокое сопротивление разрыву сплава при 600 °С (770 МПа вместо 670 МПа). Сплав ВТ 18 рекомендуется для деталей, работающих длительно (до 500 ч) при 550 - 600 °С и кратковременно (детали разового действия) - до 800 °С.

Псевдо α -сплав ВТ18У

Псевдо a-сплав ВТ18У отличается от ВТ18 более низким содержанием алюминия и циркония, а также дополнительным легированием оловом. В связи с этим он несколько технологичнее ВТ18. Поэтому из него получают не только прутки, поковки и штамповки, но и листы, хотя и с большим трудом. Термическая обработка полуфабрикатов из сплава ВТ18У производится по режимам, принятым для сплава ВТ18. По жаропрочным свойствам сплав ВТ18У не уступает сплаву ВТ 18 и рекомендуется для тех же условий эксплуатации, что и сплав ВТ 18.

Псевдо α -сплав ВТ20

Псевдо α -сплав ВТ20 принадлежит к системе Ti-Al-Zr-Mo-V. Довольно высокое содержание алюминия обеспечивает значительную прочность и жаропрочность этого сплава. Его пластичность и технологичность при обработке давлением ниже, чем у сплавов типа ОТ4. Тем не менее он хорошо деформируется в горячем состоянии и поставляется в виде поковок и штамповок толщиной до 250 мм, профилей, прутков, плит и листа. В листовом варианте этот сплав по жаропрочным характеристикам уступает только сплаву ВТ18У. Из этого сплава изготовляют сварные кольца из горячекатаных и прессованных профилей, а также цельнокатаные кольца. Сплав хорошо сваривается всеми видами сварки, применяемыми для титановых сплавов. Механические свойства сварного соединения не уступают свойствам основного металла. Сплав ВТ20 может свариваться с титановыми сплавами ВТЗ-1, ОТ4, ОТ4-1, ВТ5-1, ВТ6, ВТ14, ВТ5Л, ВТ21Л. Этот сплав поставляется также в виде фасонного литья под маркой ВТ20Л.

Единственным видом термической обработки сплава ВТ20 является отжиг. Полный отжиг проводят при температурах 700-800 °С для снятия наклепа от предшествующих операций обработки давлением. Неполный отжиг листов и прутков для снятия остаточных напряжений проводят при 600-650 °С. Сварные соединения отжигают при

650-750 °С. Сплав ВТ20 применяют для изготовления обшивок крыла, деталей и сварных узлов, длительно работающих при температурах от -70 до 450 °С (6000 ч) - 500 °С (3000 ч).

Сплавы типа ВТ6

Сплавы типа ВТ6 (Ti-6A1-4V) (a + b)-класса относятся к числу наиболее распространенных за рубежом титановых сплавов. Сплав Ti-6А1-4V используется для изготовления крупногабаритных сварных и сборных конструкций летательных аппаратов, для изготовления баллонов, работающих под внутренним давлением в широком интервале температур от 196 до 450 °С, и целого ряда других конструктивных элементов. По данным зарубежной печати, около 50 % используемого в авиакосмической промышленности титана приходится на сплав Ti-6A1-4V, аналогом которого являются отечественные сплавы типа ВТ6.

Такое широкое распространение этого сплава объясняется удачным его легированием. Алюминий в сплавах системы Ti-Al-V повышает прочностные и жаропрочные свойства, а ванадий относится к числу тех немногих легирующих элементов в титане, которые повышают не только прочностные свойства, но и пластичность.

Наряду с высокой удельной прочностью сплавы этого типа обладают меньшей чувствительностью к водороду по сравнению со сплавами ОТ4 и ОТ4-1, низкой склонностью к солевой коррозии и хорошей технологичностью.

Сплавы хорошо деформируются в горячем состоянии. Из сплавов типа ВТ6 получают прутки, трубы, профили, поковки, штамповки, плиты, листы. Они свариваются всеми традиционными видами сварки, в том числе и диффузионной. При сварке ЭЛС прочность сварного шва практически равна прочности основного материала, что выгодно отличает этот сплав от ВТ22. Сплавы типа ВТ6 применяют в отожженном и термически упрочненном состояниях. Отжиг листов, тонкостенных труб, профилей и деталей из них обычно проводят при 750-800 °С с последующим охлаждением на воздухе или вместе с печью. Отжиг прутков, поковок, штамповок и других крупногабаритных полуфабрикатов и деталей из них проводят при 750-800 "С. Охлаждение вместе с печью крупных полуфабрикатов предотвращает их коробление, а для мелких деталей позволяет избежать.частичной закалки. Однако в последнее время было доказано, что целесообразно повысить температуру отжига до 900-950 °С, что приведет к повышению вязкости разрушения и ударной вязкости при сохранении высоких пластических свойств из-за формирования смешанной структуры с большой долей пластинчатой составляющей. Двойной отжиг также позволяет повысить вязкость разрушения и сопротивление коррозионному

Сплав ВТ14

Сплав ВТ14 относится к высокопрочным термически упрочняемым титановым (α + β )-сплавам мартенситного типа системы Ti-A1-Мо-V. Этот сплав хорошо деформируется в горячем состоянии и из него получают прутки, трубы, профили, листы, плиты, поковки, штамповки. Листовую штамповку сплава в отожженном или закаленном состоянии с небольшими деформациями можно проводить в холодном состоянии, но основные операции штамповки удается успешно провести лишь при повышенных температурах.

Сплав удовлетворительно сваривается всеми видами сварки, применяемыми для титана. Для восстановления пластичности сварного соединения после сварки необходимо проводить отжиг. Сплав применяют в отожженном и термически упрочненном состояниях. Отжиг листов, прутков, поковок, штамповок и деталей из них осуществляют при температурах 740-810 °С. Термическое упрочнение состоит из закалки с температуры 870-910 °С и старения при 480- 560 °С в течение 8 - 16 ч. Сплав рекомендован для изготовления штампосварных конструкций, длительно работающих при температурах до 400 °С.

Сплав ВТ16

Сплав ВТ16 относится к высокопрочным (α + β )-сплавам той же системы Ti-A1-Мо-V, что и ВТ 14, но отличается от последнего меньшим содержанием алюминия и большим содержанием Р-стабилизаторов. В связи с этим сплав ВТ 16 по сравнению со сплавом ВТ 14 содержит больше β -фазы в отожженном состоянии (10 % - в ВТ14, 25-30 % - в ВТ16). Благодаря высокому содержанию β -фазы сплав ВТ 16 отличается высокой технологичностью. Он хорошо деформируется не только в горячем, но и в холодном состоянии, что обусловлено не только (α + β )-структурой, но и невысоким содержанием алюминия. Хотя,из сплава ВТ 16 можно изготавливать почти все виды полуфабрикатов, основная часть продукций из него - проволока и прутки диаметром от 4 до 20 мм, полученные прокаткой или волочением. Это связано с тем, что сплав ВТ 16 предназначен в основном для изготовления деталей крепления: болтов, винтов, заклепок и т.д. Состав этого сплава подбирался специально к условиям работы этих деталей.

К структуре прутков, предназначенных для изготовления деталей крепления, предъявляются довольно строгие требования: она должна быть мелкозернистая и однородная. Помимо этого, предъявляются повышенные требования к геометрическим размерам прутков и качеству их поверхности. Состав сплава ВТ 16 определяет также хорошую его свариваемость и высокую пластичность сварного соединения непосредственно после сварки. Сплав ВТ16 применяют в отожженном и термически упрочненном состояниях. Листы, тонкостенные трубы, профили и детали из них отжигают при температурах 680-790 °С, а прутки, толстостенные трубы и профили при 770-790 °С. Для термического упрочнения сплав закаливают с 780-830 °С и затем подвергают старению при 560-580 °С в течение 4-10 ч. Сплав в закаленном и состаренном состоянии с временным сопротивлением разрыву, 1200 МПа мало чувствителен к концентраторам напряжений: надрезу, перекосу и т.п. Сплав ВТ 16 может применяться для изготовления деталей крепления и других элементов самолетных конструкций длительной работы при температурах до 350 °С.

Сплав ВТЗ-1

Сплав ВТЗ-1 системы Ti-Al-Mo-Cr-Fe-Si относится к высокопрочным (α + β ) - сплавам мартенситного класса. Алюминий в сплаве ВТЗ-1 упрочняет а- и b-фазы и уменьшает плотность сплава. Эвтектоидообразующие β -стабилизаторы хром, железо и кремний упрочняют α - и β -фазы и повышают прочностные и жаропрочные свойства при умеренных температурах. Молибден не только увеличивает прочностные и жаропрочные свойства сплава, но и затрудняет эвтектоидный распад b-фазы, повышая термическую стабильность.

Сплав хорошо деформируется в горячем состоянии; из него получают катаные, прессованные и кованые прутки, катаные и прессованные профили, различные поковки и штамповки, полосы, плиты, раскатные кольца, в опытном порядке - трубы. Сплав удовлетворительно сваривается всеми видами сварки, применяемыми для титана. После сварки необходимо проводить отжиг для восстановления пластичности сварного соединения.

Изделия из сплава ВТЗ-1 обычно применяют после изотермического отжига, который состоит из нагрева при температурах 870- 920 °С и изотермической выдержки при 630-680 °С в течение 2-5 ч с последующим охлаждением на воздухе. После такого отжига сплав приобретает стабильную (а + b)-структуру, которая обеспечивает наиболее высокую термическую стабильность и максимальную пластичность. После одинарного отжига при температурах 800-850 °С сплав имеет большую прочность, чем после изотермического, но меньшие пластичность и термическую стабильность. Прочностные свойства сплава можно несколько повысить закалкой при 840-900 °С с последующим старением при 500-620 °С в течение 1-4 ч. Однако упрочняющая термическая обработка применяется редко, так как приводит к снижению термической стабильности сплава.

Сплав ВТЗ-1 используется при изготовлении деталей двигателей, работающих длительное время (до 6000 ч и более) при температурах до 400 °С; деталей типа арматуры, ушковых болтов; деталей системы управления. В последнее время наметилась тенденция к замене сплава ВТЗ-1 сплавом ВТ6, по-видимому, в основном в связи с тем, что сплав Ti-6A1-4V успешно используется многие годы в зарубежной практике для изготовления самых ответственных конструкций. Дополнительным легированием удается повысить прочностные свойства сплава Ti-6A1-4V при сохранении удовлетворительной пластичности, мо механические свойства сварных соединений при этом значительно ухудшаются, так что при свариваемости, в частности, электронно-лучевой сваркой, сплавы типа ВТ6 не имеют себе равных, кроме, может быть, сплава ВТ20.

Сплав ВТ22

Сплав ВТ22 (α + β )-класса относится к сильнолегированным высокопрочным сплавам системы Ti-Al-Mo-V-Fe-Cr. По содержанию b-стабилизирующих элементов сплав 1ГГ22 близок ко второй критической концентрации (К* ~ 1,0). Структура и свойства сплава ВТ22 сильно зависят от колебания химического состава в пределах, установленных техническими условиями. В зависимости от содержания легирующих элементов его структура после закалки из β -области может быть представлена или одной β -фазой, или β -фазой и мартенситом. Таким образом, по структуре в закаленном состоянии - это сплав переходного класса.

Сплав обладает хорошей технологической пластичностью при горячей обработке давлением. Из него получают прутки, профили, трубы, поковки, штамповки, плиты. Сплав удовлетворительно сваривается сваркой плавлением, аргонодуговой сваркой, сваркой под флюсом, роликовой и точечной сваркой. После сварки необходимо проводить отжиг для повышения комплекса механических свойств сварного соединения.

Сплав ВТ22 применяют в отожженном и термически упрочненном состояниях. Структура отожженного сплава ВТ22 представлена примерно равными количествами а- и b-фаз, и поэтому он относится к самым прочным титановым сплавам в отожженном состоянии. Его прочностные свойства в отожженном состоянии такие же, как у сплавов ВТ6, ВТЗ-1, ВТ 14 после закалки и старения. Это открывает новые возможности использования титановых сплавов в крупногабаритных изделиях, когда упрочняющая термическая обработка затруднена. Из сплава ВТ22 могут быть изготовлены поковки и штамповки массой в несколько тонн.

Для обеспечения наилучшего сочетания прочностных и пластических характеристик сплав ВТ22 подвергают отжигу по довольно сложному режиму: нагрев при 820-850 °С в течение 1-3 ч, охлаждение с печью до 740-760 °С, выдержка 1-3 ч, далее охлаждение на воздухе и последующий нагрев до 500-650 °С в течение 2-4 ч. .Дополнительное упрочнение сплава ВТ22 может быть достигнуто закалкой с температур 720-780 °С и старением при 480-600 °С в течение 4-10 ч. Временные сопротивление разрыву закаленного сплава составляет 1000-1100 МПа при удлинении 10-15 %, а состаренного - 1300-1600 МПа при удлинении 5-10 %. Сплав предназначен для получения высоконагруженных деталей и конструкций, длительно работающих до температур 350-400 °С. Из него изготавливают силовые детали фюзеляжа, крыла, штамповки, детали системы управления, крепежные детали типа ушковых болтов.

Сплав ВТ9

Сплав ВТ9 обеспечивает более высокие прочностные и жаропрочные свойства по сравнению со сплавом ВТ6 за счет высокого содержания алюминия и легированием кремния. Предназначен для работы при 400 - 500 °С. Двойной отжиг обеспечивает оптимальное сочетание механических свойств; содержание β - фазы после отжига примерно 10%. Сплав термически упрочняется путем закалки и старения. Основными вида полуфабриката являются прутки, поковки, штамповки и плиты. Удовлетворительно деформируется в горячем состоянии. Технологические свойства при обработке давлением хуже, чем у сплава ВТ6. Сварка не рекомендуется. В основном применяется в деталях ГТД (дисках, лопатках) и других деталях компрессора.

Сплав ВТ8

Сплав ВТ8 обеспечивает более высокие прочностные и жаропрочные свойства по сравнению со сплавом ВТ6 за счет высокого содержания алюминия и легированием кремния. Максимальная рабочая температура 480 0С. Сплавы ВТ8-1 и ВТ8-1М превосходят сплавы ВТ3-1 и ВТ9 по термической стабильности, пластичности, технологичности и характеристикам трещиностойкости. Двойной и изотермический отжиги обеспечивают оптимальное сочетание свойств; содержание β - фазы в отожженном сплаве примерно 10%. Сплав термически упрочняется. Основными вида полуфабриката являются прутки, поковки, штамповки и плиты. Удовлетворительно деформируется в горячем состоянии. Технологические свойства при обработке давлением хуже, чем у сплава ВТ6. Сварка не рекомендуется. В основном применяется в деталях ГТД (дисках, лопатках компрессора низкого давления, деталях крепления вентилятора).

Сплав ВТ35

Сплав ВТ35 высоколегированный псевдо - β - сплав с β - фазой, легко сохраняющейся при охлаждении; сплав ВТ35Л сохраняет b фазу в процессе естественного охлаждения. Обладает большой прокаливаемостыо. В закаленном состоянии сплав обладает высокой пластичностью и способен к холодной деформации. Старение приводит к существенному упрочнению (σ b > 1200МПа; δ = 6%) при высокой вязкости разрушения. Применяется для изготовления листов, фольги, фасонных отливок. Удовлетворительно обрабатывается давлением в горячем состоянии; после закалки способен к холодной деформации. В основном используется в сотовых

Титан (лат. titanium), ti, химический элемент iv группы периодической системы Менделеева; атомный номер 22, атомная масса 47,90; имеет серебристо-белый цвет, относится к лёгким металлам. Природный Т. состоит из смеси пяти стабильных изотопов: 46 ti (7,95%), 47 ti (7,75%), 48 ti (73,45%), 49 ti (5,51%), 50 ti (5,34%). Известны искусственные радиоактивные изотопы 45 ti (ti 1/2 = 3,09 ч , 51 ti (ti 1/2 = 5,79 мин ) и др.

Историческая справка. Т. в виде двуокиси был открыт английским любителем-минералогом У. Грегором в 1791 в магнитных железистых песках местечка Менакан (Англия); в 1795 немецкий химик М. Г. Клапрот установил, что минерал рутил представляет собой природный окисел этого же металла, названного им «титаном» [в греческой мифологии титаны - дети Урана (Неба) и Геи (Земли)]. Выделить Т. в чистом виде долго не удавалось; лишь в 1910 американский учёный М. А. Хантер получил металлический Т. нагреванием его хлорида с натрием в герметичной стальной бомбе; полученный им металл был пластичен только при повышенных температурах и хрупок при комнатной из-за высокого содержания примесей. Возможность изучать свойства чистого Т. появилась только в 1925, когда нидерландские учёные А. Ван-Аркел и И. де Бур методом термической диссоциации иодида титана получили металл высокой чистоты, пластичный при низких температурах.

Распространение в природе. Т. - один из распространённых элементов, среднее содержание его в земной коре (кларк) составляет 0,57% по массе (среди конструкционных металлов по распространённости занимает 4-е место, уступая железу, алюминию и магнию). Больше всего Т. в основных породах так называемой «базальтовой оболочки» (0,9%), меньше в породах «гранитной оболочки» (0,23%) и ещё меньше в ультраосновных породах (0,03%) и др. К горным породам, обогащенным Т., относятся пегматиты основных пород, щелочные породы, сиениты и связанные с ними пегматиты и др. Известно 67 минералов Т., в основном магматического происхождения; важнейшие - рутил и ильменит.

В биосфере Т. в основном рассеян. В морской воде его содержится 1 · 10 -7 %; Т. - слабый мигрант.

Физические свойства. Т. существует в виде двух аллотропических модификаций: ниже температуры 882,5 °С устойчива a -форма с гексагональной плотноупакованной решёткой (а = 2,951 å, с = 4,679 å), а выше этой температуры - b -форма с кубической объёмно-центрированной решёткой а = 3,269 å. Примеси и легирующие добавки могут существенно изменять температуру a / b превращения.

Плотность a -формы при 20 °С 4,505 г/см 3 а при 870 °С 4,35 г/см 3 b -формы при 900 °С 4,32 г/см 3 ; атомный радиус ti 1,46 å, ионные радиусы ti + 0,94 å, ti 2+ 0,78 å, ti 3+ 0,69 å, ti 4+ 0,64 å, t пл 1668±5°С, t кип 3227 °С; теплопроводность в интервале 20-25 °С 22,065 вт/ (м ? К) ; температурный коэффициент линейного расширения при 20 °С 8,5 ? 10 -6 , в интервале 20-700 °С 9,7 ? 10 -6 ; теплоёмкость 0,523 кдж/ (кг ? К) ; удельное электросопротивление 42,1 ? 10 -6 ом ? см при 20 °С; температурный коэффициент электросопротивления 0,0035 при 20 °С; обладает сверхпроводимостью ниже 0,38±0,01 К. Т. парамагнитен, удельная магнитная восприимчивость (3,2±0,4) ? 10 -6 при 20°С. Предел прочности 256 Мн/м 2 (25,6 кгс/мм 2) , относительное удлинение 72%, твёрдость по Бринеллю менее 1000 Мн/м 2 (100 кгс/мм 2) . Модуль нормальной упругости 108000 Мн/м 2 (10800 кгс/мм 2) . Металл высокой степени чистоты ковок при обычной температуре.

Применяемый в промышленности технический Т. содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Т. марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см 3 , предел прочности 300- 550 Мн/м 2 (30-55 кгс/мм 2) , относительное удлинение не ниже 25%, твёрдость по Бринеллю 1150-1650 Мн/м 2 (115-165 кгс/мм 2) . Конфигурация внешней электронной оболочки атома ti 3 d 2 4 s 2 .

Химические свойства . Чистый Т. - химически активный переходный элемент, в соединениях имеет степени окисления + 4, реже +3 и +2. При обычной температуре и вплоть до 500-550 °С коррозионно устойчив, что объясняется наличием на его поверхности тонкой, но прочной окисной плёнки.

С кислородом воздуха заметно взаимодействует при температуре выше 600 °С с образованием tio 2. Тонкая титановая стружка при недостаточной смазке может загораться в процессе механической обработки. При достаточной концентрации кислорода в окружающей среде и повреждении окисной плёнки путём удара или трения возможно загорание металла при комнатной температуре и в сравнительно крупных кусках.

Окисная плёнка не защищает Т. в жидком состоянии от дальнейшего взаимодействия с кислородом (в отличие, например, от алюминия), и поэтому его плавка и сварка должны проводиться в вакууме, в атмосфере нейтрального газа или под флюсом. Т. обладает способностью поглощать атмосферные газы и водород, образуя хрупкие сплавы, непригодные для практического использования; при наличии активированной поверхности поглощение водорода происходит уже при комнатной температуре с небольшой скоростью, которая значительно возрастает при 400 °С и выше. Растворимость водорода в Т. является обратимой, и этот газ можно удалить почти полностью отжигом в вакууме. С азотом Т. реагирует при температуре выше 700 °С, причём получаются нитриды типа tin; в виде тонкого порошка или проволоки Т. может гореть в атмосфере азота. Скорость диффузии азота и кислорода в Т. значительно ниже, чем водорода. Получаемый в результате взаимодействия с этими газами слой отличается повышенными твёрдостью и хрупкостью и должен удаляться с поверхности титановых изделий путём травления или механической обработки. Т. энергично взаимодействует с сухими галогенами, по отношению к влажным галогенам устойчив, так как влага играет роль ингибитора.

Металл устойчив в азотной кислоте всех концентраций (за исключением красной дымящейся, вызывающей коррозионное растрескивание Т., причём реакция иногда идёт со взрывом), в слабых растворах серной кислоты (до 5% по массе). Соляная, плавиковая, концентрированная серная, а также горячие органические кислоты: щавелевая, муравьиная и трихлоруксусная реагируют с Т.

Т. коррозионно устойчив в атмосферном воздухе, морской воде и морской атмосфере, во влажном хлоре, хлорной воде, горячих и холодных растворах хлоридов, в различных технологических растворах и реагентах, применяемых в химической, нефтяной, бумагоделательной и др. отраслях промышленности, а также в гидрометаллургии. Т. образует с С, В, se, si металлоподобные соединения, отличающиеся тугоплавкостью и высокой твёрдостью. Карбид tig (t пл 3140 °С) получают нагреванием смеси tio 2 с сажей при 1900-2000 °С в атмосфере водорода; нитрид tin (t пл 2950 °С) - нагреванием порошка Т. в азоте при температуре выше 700 °С. Известны силициды tisi 2 , ti 5 si 3 , tisi и бориды tib, ti 2 b 5 , tib 2 . При температурах 400-600 °С Т. поглощает водород с образованием твёрдых растворов и гидридов (tih, tih 2). При сплавлении tio 2 со щелочами образуются соли титановых кислот мета- и ортотитанаты (например, na 2 tio 3 и na 4 tio 4), а также полититанаты (например, na 2 ti 2 o 5 и na 2 ti 3 o 7). К титанатам относятся важнейшие минералы Т., например ильменит fetio 3 , перовскит catio 3 . Все титанаты малорастворимы в воде. Двуокись Т., титановые кислоты (осадки), а также титанаты растворяются в серной кислоте с образованием растворов, содержащих титанилсульфат tioso 4 . При разбавлении и нагревании растворов в результате гидролиза осаждается h 2 tio 3 , из которой получают двуокись Т. При добавлении перекиси водорода в кислые растворы, содержащие соединения ti (iv), образуются перекисные (надтитановые) кислоты состава h 4 tio 5 и h 4 tio 8 и соответствующие им соли; эти соединения окрашены в жёлтый или оранжево-красный цвет (в зависимости от концентрации Т.), что используется для аналитического определения Т.

Получение. Наиболее распространённым методом получения металлического Т. является магниетермический метод, то есть восстановление тетрахлорида Т. металлическим магнием (реже - натрием):

ticl 4 + 2mg = ti + 2mgcl 2 .

В обоих случаях исходным сырьём служат окисные руды Т. - рутил, ильменит и др. В случае руд типа ильменитов Т. в форме шлака отделяется от железа путём плавки в электропечах. Шлак (так же, как рутил) подвергают хлорированию в присутствии углерода с образованием тетрахлорида Т., который после очистки поступает в восстановительный реактор с нейтральной атмосферой.

Т. по этому процессу получается в губчатом виде и после измельчения переплавляется в вакуумных дуговых печах на слитки с введением легирующих добавок, если требуется получить сплав. Магниетермический метод позволяет создать крупное промышленное производство Т. с замкнутым технологическим циклом, так как образующийся при восстановлении побочный продукт - хлорид магния направляется на электролиз для получения магния и хлора.

В ряде случаев для производства изделий из Т. и его сплавов выгодно применять методы порошковой металлургии. Для получения особо тонких порошков (например, для радиоэлектроники) можно использовать восстановление двуокиси Т. гидридом кальция.

Мировое производство металлического Т. развивалось весьма быстро: около 2 т в 1948, 2100 т в 1953, 20 000 т в 1957; в 1975 оно превысило 50 000 т.

Применение . Основные преимущества Т. перед др. конструкционными металлами: сочетание лёгкости, прочности и коррозионной стойкости. Титановые сплавы по абсолютной, а тем более по удельной прочности (то есть прочности, отнесённой к плотности) превосходят большинство сплавов на основе др. металлов (например, железа или никеля) при температурах от -250 до 550 °С, а по коррозионности они сравнимы со сплавами благородных металлов. Однако как самостоятельный конструкционный материал Т. стал применяться только в 50-е гг. 20 в. в связи с большими техническими трудностями его извлечения из руд и переработки (именно поэтому Т. условно относили к редким металлам ) . Основная часть Т. расходуется на нужды авиационной и ракетной техники и морского судостроения. Сплавы Т. с железом, известные под названием «ферротитан» (20-50% Т.), в металлургии качественных сталей и специальных сплавов служат легирующей добавкой и раскислителем.

Технический Т. идёт на изготовление ёмкостей, химических реакторов, трубопроводов, арматуры, насосов и др. изделий, работающих в агрессивных средах, например в химическом машиностроении. В гидрометаллургии цветных металлов применяется аппаратура из Т. Он служит для покрытия изделий из стали. Использование Т. даёт во многих случаях большой технико-экономический эффект не только благодаря повышению срока службы оборудования, но и возможности интенсификации процессов (как, например, в гидрометаллургии никеля). Биологическая безвредность Т. делает его превосходным материалом для изготовления оборудования для пищевой промышленности и в восстановительной хирургии. В условиях глубокого холода прочность Т. повышается при сохранении хорошей пластичности, что позволяет применять его как конструкционный материал для криогенной техники. Т. хорошо поддаётся полировке, цветному анодированию и др. методам отделки поверхности и поэтому идёт на изготовление различных художественных изделий, в том числе и монументальной скульптуры. Примером может служить памятник в Москве, сооруженный в честь запуска первого искусственного спутника Земли. Из соединений титана практического значение имеют окислы Т., галогениды Т., а также силициды Т., используемые в технике высоких температур; бориды Т. и их сплавы, применяемые в качестве замедлителей в ядерных энергетических установках благодаря их тугоплавкости и большому сечению захвата нейтронов. Карбид Т., обладающий высокой твёрдостью, входит в состав инструментальных твёрдых сплавов, используемых для изготовления режущих инструментов и в качестве абразивного материала.

Двуокись титана и титанат бария служат основой титановой керамики, а титанат бария - важнейший сегнетоэлектрик.

С. Г. Глазунов.

Титан в организме. Т. постоянно присутствует в тканях растений и животных. В наземных растениях его концентрация - около 10 -4 % , в морских - от 1,2 ? 10 -3 до 8 ? 10 -2 % , в тканях наземных животных - менее 2 ? 10 -4 % , морских - от 2 ? 10 -4 до 2 ? 10 -2 %. Накапливается у позвоночных животных преимущественно в роговых образованиях, селезёнке, надпочечниках, щитовидной железе, плаценте; плохо всасывается из желудочно-кишечного тракта. У человека суточное поступление Т. с продуктами питания и водой составляет 0,85 мг; выводится с мочой и калом (0,33 и 0,52 мг соответственно). Относительно малотоксичен.

Лит.: Глазунов С. Г., Моисеев В. Н., Конструкционные титановые сплавы, М., 1974; Металлургия титана, М., 1968; Горощенко Я. Г., Химия титана, [ч. 1-2], К., 1970-72; zwicker u., titan und titanlegierungen, b., 1974; bowen h. i. m., trace elements in biochemistry, l.- n. y., 1966.



Справочники