Почва и жизнь на земле. Почвообразование – это сложный природный процесс образования почвы из горной породы под воздействием факторов почвообразования в пределах биогеосферы Земли

Разделы на этой странице:

Почва – это верхний тонкий слой земной коры (от десятков сантиметров до двух-трех метров), большей частью покрытый растительностью и обладающий плодородием. Она способна обеспечивать растения водой, воздухом, теплом и необходимыми веществами, благодаря чему растения развиваются. Познакомимся с тем, как почва образуется.

Образование почвы

Возникновение и формирование почвы – очень сложный процесс. Почва является результатом воздействия на горные породы климатических факторов и живых организмов. Хотя почва образовалась из горной породы, но на нее не похожа.

Резкая смена температуры, ветер, вода разрушают горные породы, они теряют прочность, рассыпаются.

Невидимые простым глазом микроорганизмы (бактерии, микроскопические грибы), выделяя активные вещества, выполняют большую работу по превращению горной породы в почву. Кроме того, они разлагают остатки растений и останки животных, в результате чего образуется перегной, который делает почву плодородной.

В почве обитают разные животные: дождевые черви, муравьи, различные личинки, жуки и другие насекомые. Кроме того, часто встречаются полевые мыши, суслики, хомяки и прочие землерои. Одни из них живут в почве постоянно, другие только зимуют в ней, третьи прячутся от жары, некоторые откладывают в почву яйца или используют ее как убежище (рис. 69). Все они влияют на состояние почвы: измельчают и перерабатывают остатки растений, перерывают и рыхлят почву, перемешивают ее слои. Так образуется почва с определенной структурой и свойствами.


Рис. 69. В почве обитают разнообразные организмы

Структура почвы

Если вы возьмете горсть верхнего слоя почвы, богатого перегноем, сожмете ее, потом разожмете пальцы, то увидите, что комок земли рассыпался на множество темных маленьких комочков. Такая земля рыхлая, она доступна для воздуха, в ней лучше сохраняется вода. Эта почва структурная; на структурных почвах хорошо растут растения, так как корни получают достаточно влаги и воздуха.

Бесструктурная почва мелко раздробленная, пылеватая. По сравнению со структурной почвой она больше подвержена смыву водой, выдуванию. В ней практически не задерживается вода, и растения развиваются очень плохо.

Разнообразие почв

Почва состоит из слоев – горизонтов, отличающихся друг от друга по цвету (рис. 70).


Рис. 70.Горизонты почвы

Самый верхний горизонт – темный. В нем накапливаются остатки отмерших живых организмов, образующих перегной. От количества перегноя зависит основное свойство почвы – ее плодородие. Чем больше в почве перегноя, тем лучше растения обеспечены необходимыми им веществами. Ниже расположен слой, содержащий мало перегноя, поэтому он имеет серый, как у золы, цвет. Почва, в которой хорошо развит этот слой, называется подзолистой.

Подзолистые почвы образуются в северных районах нашей страны под пологом леса и под травянистым покровом лугов. Здесь в почве скапливается влага и создаются благоприятные условия для гниения. Под действием микробов опавшие листья и ветки превращаются в перегной, в котором при разложении образуются почвенные кислоты. Вот почему подзолистые почвы часто кислые. Перегнойный горизонт в подзолистых почвах небольшой, вследствие чего они бедны необходимыми для растений веществами.

На юге нашей Родины сформировалась почва с мощными отложениями перегноя – черноземы. В них черный по цвету слой почвы достигает более метра толщины. Черноземные почвы от подзолистых отличаются значительно большим количеством важных для растений веществ.

В разных природных условиях формируются почвы, значительно отличающиеся друг от друга составом, структурой и свойствами. В нашей стране, кроме подзолистых и черноземных, встречаются торфяные, солончаковые, песчаные, глинистые типы почв (рис. 71).

Очень, конечно, интересно узнавать, из чего получилось то или вот это, как образовалось такое чудо, наша Земля, просто земля или почва. Ведь уже благодаря созданию грунта появились растения, животные, насекомые, рыбы, да и мы. Или наоборот? Пишу. и жутковато становится, давно «это» было, да что было-то, невозможно осмыслить.

По мнению учёных, наша Земля состоит из твёрдого (из-за огромного давления) ядра в центре. жидкого ядра, обладающего электромагнитными свойствами, далее идёт горячая вязкая мантия и внешняя кора, состоящая из горных пород.

Конечно, всё это очень упрощено для лучшего понимания, но. как оказалось, о космосе люди знают больше, чем о том, что у них внизу под ногами творится.

Итак, давно это было. Миллиарда 4 лет назад. Под земной корой бушевал ад, постепенно остывая. Где-то расплавленная магма находила силы, выбиралась на поверхность, образовала базальты, в других местах — таилась недалеко от её поверхности — так получались граниты. Интересно, что под океанами гранитного пласта нет.

Магматическая горная порода обсидиан — вулканическое стекло

Гранит

Эти первичные горные образования подвергались жестоким изменениям под влиянием сил природы, в результате получались другие породы.

Глубоко при высокой температуре и давлении возникали сланцы и гнейсы.

Таким образом образовался базальтовый, гранитный, а затем, особенно с появлением в атмосфере кислорода, осадочный слой земной коры, который продолжает формироваться в настоящее время.

Процесс превращения твёрдых горных образований в рыхлые осадочные называется выветриванием. Выветривание бывает физическое, химическое, органическое, является важным процессом, ведущим к образованию почвы.

Так со временем на поверхности земной коры возникали гипс, пески, глины, известняки.

Предполагается, жизнь на земле возникла примерно 3,5 миллиарда лет назад, в период архея. Найденные в горных породах того времени углерод, графит говорят о том, что тогда образовались простейшие бактерии — археи, прокариоты.

Каким образом это произошло, мы не знаем. Наиболее вероятно, эта форма жизни возникла под влиянием некоторых условий (парниковый тёплый климат, испарение из глубин определённых газов, и т.п.) . По другой версии учёных эти очень выносливые бактерии были занесены на нашу планету метеоритом с Марса.

Как бы то ни было, но именно благодаря их всеядности, живучести, на земле стали образовываться условия, благоприятные для развития жизни, почвы. Археи вырабатывали из своего тельца ферменты. которые могли «растворять» камни, то есть преобразовывать минералы гор. В процессе органического выветривания огромные количества археев разрушали камни, сами же неустанно быстро размножались (из одной получалось две каждые полчаса).

В итоге на земной коре из продуктов выветривания (песок, глина), жизнедеятельности одноклеточных организмов, из самих бактерий, не имеющих ядра (археев) медленно- медленно стал создаваться почвенный слой.

Теперь уже создались условия для заселения образующейся почвы одноядерными одноклеточными. а также мхами, лишайниками. Они также разрушают горные образования, изменяют их состав. Отмирающие мхи, лишайники разлагаются бактериями, в результате чего получается перегной, образование почвы идёт гораздо быстрее.

Таким образом готовится пища для появления более развитых зелёных культур, деревьев, а затем животных, которые, погибая. в свою очередь вносят вклад в образование почвы на планете. Вот такой круговорот.

Так, постепенно, в течение миллиардов лет, происходит изменение, развитие нашей планеты, её почвенного покрова, растительного, животного мира.

«Вначале было слово, и слово было у Бога, и слово было Бог»… Очень хочется добавить «…и слово было — Жизнь». Ведь всё на нашей планете создавалось для жизни!

Для горизонтов принято буквенное обозначение, позволяющее записывать строение профиля. Например, для дерново-подзолистой почвы : A 0 -A 0 A 1 -A 1 -A 1 A 2 -A 2 -A 2 B-BC-C .

Выделяются следующие типы горизонтов :

  • Органогенные - (подстилка (A 0 , O), торфяной горизонт (T), перегнойный горизонт (A h , H), дернина (A d), гумусовый горизонт (A) и т. д.) - характеризующиеся биогенным накоплением органического вещества.
  • Элювиальные - (подзолистый , лессированный, осолоделый , сегрегированный горизонты; обозначаются буквой E с индексами, либо A 2) - характеризующиеся выносом органических и/или минеральных компонентов.
  • Иллювиальные - (B с индексами) - характеризующиеся накоплением вынесенного из элювиальных горизонтов вещества.
  • Метаморфические - (B m) - образуются при трансформации минеральной части почвы на месте.
  • Гидрогенно-аккумулятивные - (S) - образуются в зоне максимального накопления веществ (легкорастворимые соли, гипс, карбонаты, оксиды железа и т. д.), приносимых грунтовыми водами.
  • Коровые - (K) - горизонты, сцементированные различными веществами (легкорастворимые соли, гипс , карбонаты, аморфный кремнезём , оксиды железа и др.).
  • Глеевые - (G) - с преобладающими восстановительными условиями.
  • Подпочвенные - материнская порода (C), из которой образовалась почва, и залегающая ниже подстилающая порода (D) иного состава.

Твёрдая фаза почв

Почва высокодисперсна и обладает большой суммарной поверхностью твёрдых частиц: от 3-5 м²/г у песчаных до 300-400 м²/г у глинистых. Благодаря дисперсности почва обладает значительной пористостью: объём пор может достигать от 30 % общего объёма в заболоченных минеральных почвах до 90 % в органогенных торфяных. В среднем же этот показатель составляет 40-60 %.

Плотность твёрдой фазы (ρ s) минеральных почв колеблется от 2,4 до 2,8 г/см³, органогенных: 1,35-1,45 г/см³. Плотность почвы (ρ b) ниже: 0,8-1,8 г/см³ и 0,1-0,3 г/см³ соответственно. Пористость (порозность, ε) связана с плотностями по формуле:

ε = 1 - ρ b /ρ s

Минеральная часть почвы

Минеральный состав

Около 50-60 % объёма и до 90-97 % массы почвы составляют минеральные компоненты. Минеральный состав почвы отличается от состава породы, на которой она образовалась: чем старше почва, тем сильнее это отличие.

Минералы, являющиеся остаточным материалом в ходе выветривания и почвообразования, носят название первичных . В зоне гипергенеза большинство из них неустойчиво и с той или иной скоростью разрушается. Одними из первых разрушаются оливин , амфиболы , пироксены , нефелин . Более устойчивыми являются полевые шпаты , составляющие до 10-15 % массы твёрдой фазы почвы. Чаще всего они представлены относительно крупными песчаными частицами. Высокой стойкостью отличаются эпидот , дистен , гранат , ставролит , циркон , турмалин . Содержание их обычно незначительно, однако позволяет судить о происхождении материнской породы и времени почвообразования. Наибольшую устойчивость имеет кварц , который выветривается за несколько миллионов лет. Благодаря этому в условиях длительного и интенсивного выветривания, сопровождающегося выносом продуктов разрушения минералов, происходит его относительное накопление.

Почва характеризуется высоким содержанием вторичных минералов , образованных в результате глубокого химического преобразования первичных, или же синтезированных непосредственно в почве. Особенно важна среди них роль глинистых минералов - каолинита , монтмориллонита , галлуазита , серпентина и ряда других. Они обладают высокими сорбционными свойствами, большой ёмкостью катионного и анионного обмена, способностью к набуханию и удержанию воды, липкостью и т. д. Этими свойствами во многом обусловлена поглотительная способность почв, её структура и, в конечном счёте, плодородие.

Высоко содержание минералов-оксидов и гидроксидов железа (лимонит , гематит), марганца (вернадит , пиролюзит , манганит), алюминия (гиббсит) и др., также сильно влияющие на свойства почвы - они участвуют в формировании структуры, почвенного поглощающего комплекса (особенно в сильно выветрелых тропических почвах), принимают участие в окислительно-восстановительных процессах. Большую роль в почвах играют карбонаты (кальцит , арагонит см. карбонатно-кальциевое равновесие в почвах). В аридных регионах в почве нередко накапливаются легкорастворимые соли (хлорид натрия , карбонат натрия и др.), влияющие на весь ход почвообразовательного процесса.

Гранулометрический состав

Треугольник Ферре

В почвах могут находиться частицы диаметром как менее 0,001 мм , так и более нескольких сантиметров . Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь - большие величины ёмкости катионного обмена , водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые (глинистые) почвы могут иметь проблемы с воздухосодержанием, лёгкие (песчаные) - с водным режимом.

Для подробного анализа весь возможный диапазон размеров делят на участки, называемые фракциями . Единой классификации частиц не существует. В российском почвоведении принята шкала Н. А. Качинского. Характеристика гранулометрического (механического) состава почвы даётся на основании содержания фракции физической глины (частиц менее 0,01 мм) и физического песка (более 0,01 мм) с учётом типа почвообразования.

В мире также широко применяется определение механического состава почвы по треугольнику Ферре: по одной стороне откладывается доля пылеватых (silt , 0,002-0,05 мм) частиц, по второй - глинистых (clay , <0,002 мм), по третьей - песчаных (sand , 0,05-2 мм) и находится место пересечения отрезков. Внутри треугольник разбит на участки, каждый из которых соответствует тому или иному гранулометрическому составу почвы. Тип почвообразования при этом не учитывается.

Органическая часть почвы

В почве содержится некоторое количество органического вещества. В органогенных (торфяных) почвах оно может преобладать, в большинстве же минеральных почв его количество не превышает нескольких процентов в верхних горизонтах.

В состав органического вещества почвы входят как растительные и животные остатки, не утратившие черт анатомического строения, так и отдельные химические соединения, называемые гумусом . В составе последнего находятся как неспецифические вещества известного строения (липиды , углеводы , лигнин , флавоноиды , пигменты , воск , смолы и т. д.), составляющие до 10-15 % всего гумуса, так и образующиеся из них в почве специфические гумусовые кислоты .

Гумусовые кислоты не имеют определённой формулы и представляют собой целый класс высокомолекулярных соединений. В советском и российском почвоведении они традиционно разделяются на гуминовые и фульвокислоты .

Элементный состав гуминовых кислот (по массе): 46-62 % C, 3-6 % N, 3-5 % H, 32-38 % O. Состав фульвокислот: 36-44 % C, 3-4,5 % N, 3-5 % H, 45-50 % O. В обоих соединениях присутствуют также сера (от 0,1 до 1,2 %), фосфор (сотые и десятые доли %). Молекулярные массы для гуминовых кислот составляют 20-80 кДа (минимальная 5 кДа, максимальная 650 кДа), для фульвокислот 4-15 кДа. Фульвокислоты подвижнее, растворимы на всём диапазоне (гуминовые выпадают в осадок в кислой среде). Отношение углерода гуминовых и фульвокислот (C гк /C фк) является важным показателем гумусового состояния почв.

В молекуле гуминовых кислот выделяют ядро, состоящее из ароматических колец , в том числе азотсодержащих гетероциклов. Кольца соединяются «мостиками» с двойными связями, создающими протяжённые цепи сопряжения , обуславливающие тёмную окраску вещества . Ядро окружено периферическими алифатическими цепями, в том числе углеводородного и полипептидного типов. Цепи несут различные функциональные группы (гидроксильные , карбонильные , карбоксильные , аминогруппы и др.), что является причиной высокой ёмкости поглощения - 180-500 мг-экв/100 г.

О строении фульвокислот известно значительно меньше. Они имеют тот же состав функциональных групп, однако более высокую ёмкость поглощения - до 670 мг-экв/100 г.

Механизм формирования гумусовых кислот (гумификация) до конца не изучен. По конденсационной гипотезе (М. М. Кононова, А. Г. Трусов) эти вещества синтезируются из низкомолекулярных органических соединений. По гипотезе Л. Н. Александровой гумусовые кислоты образуются при взаимодействии высокомолекулярных соединений (белки, биополимеры), затем постепенно окисляются и расщепляются. Согласно обеим гипотезам в этих процессах принимают участие ферменты , образуемые преимущественно микроорганизмами. Есть предположение о чисто биогенном происхождении гумусовых кислот. По многим свойствам они напоминают тёмноокрашенные пигменты грибов .

Почвенная структура

Структура почвы оказывает влияние на проникновение воздуха к корням растений, удержание влаги, развитие микробного сообщества. В зависимости только от размера агрегатов урожай может меняться на порядок. Оптимальна для развития растений структура, в которой преобладают агрегаты размером от 0,25 до 7-10 мм (агрономически ценная структура). Важным свойством структуры является её прочность, особенно водоустойчивость.

Преобладающая форма агрегатов является важным диагностическим признаком почвы. Выделяют округло-кубовидную (зернистую, комковатую, глыбистую, пылеватую), призмовидную (столбовидную, призмовидную, призматическую) и плитовидную (плитчатую, чешуйчатую) структуру, а также ряд переходных форм и градаций по размеру. Первый тип характерен для верхних гумусовых горизонтов и обуславливает большую порозность, второй - для иллювиальных, метаморфических горизонтов, третий - для элювиальных.

Новообразования и включения

Основная статья: Почвенные новообразования

Новообразования - скопления веществ, образующиеся в почве в процессе её формирования.

Широко распространены новообразования железа и марганца , чья миграционная способность зависит от окислительно-восстановительного потенциала и контролируется организмами, в особенности бактериями . Они представлены конкрециями , трубками по ходам корней, корками и др. В некоторых случаях происходит цементация почвенной массы железистым материалом. В почвах, особенно аридных и семиаридных регионов, распространены известковые новообразования: налёты, выцветы, псевдомицелий, конкреции, корковые образования. Новообразования гипса , также характерные для аридных областей, представлены налётами, друзами , гипсовыми розами, корками. Встречаются новообразования легкорастворимых солей, кремнезёма (присыпка в элювиально-иллювиально дифференцированных почвах, опаловые и халцедоновые прослои и коры, трубки), глинистых минералов (кутаны - натёки и корочки, образующиеся в ходе иллювиального процесса), часто вместе с гумусом.

К включениям относят любые объекты, находящиеся в почве, но не связанные с процессами почвообразования (археологическое находки, кости, раковины моллюсков и простейших, обломки породы, мусор). Неоднозначно отнесение к включениям, либо новообразованиям копролитов, червоточин, кротовин и прочих биогенных образований.

Жидкая фаза почв

Состояния воды в почве

В почве различают воду связанную и свободную. Первую частицы почвы настолько прочно удерживают, что она не может передвигаться под влиянием силы тяжести,а свободная вода подчинена закону земного притяжения. Связанную воду в свою очередь делят на химически и физически связанную.

Химически связанная вода входит в состав некоторых минералов. Эта вода конституционная, кристаллизационная и гидратная. Химически связанную воду можно удалить лишь путем нагревания, а некоторые формы (конституционную воду) - прокаливанием минералов. В результате выделения химически связанной воды свойства тела настолько меняются, что можно говорить о переходе в новый минерал.

Физически связанную воду почва удерживает силами поверхностной энергии. Поскольку величина поверхностной энергии возрастает с увеличением общей суммарной поверхности частиц, то содержание физически связанной воды зависит от размера частиц, слагающих почву. Частицы крупнее 2 мм в диаметре не содержат физически связанную воду; этой способностью обладают лишь частицы, имеющие диаметр менее указанного. У частиц диаметром от 2 до 0,01 мм способность удерживать физически связанную воду выражена слабо. Она возрастает при переходе к частицам меньше 0,01 мм и наиболее выражена у цредколлоидных и особенно коллоидных частиц. Способность удерживать физически связанную воду зависит не только от размера частиц. Определенное влияние оказывает форма частиц и их химикоминералогический состав. Повышенной способностью удерживать физически связанную воду обладает перегной, торф. Последующие слои молекул воды частица удерживает со все меньшей силой. Это рыхло связанная вода. По мере отдаления частицы от поверхности притяжение ею молекул воды постепенно ослабевает. Вода переходит в свободное состояние.

Первые слои молекул воды, т.е. гигроскопическую воду, частицы почвы притягивают с громадной силой, измеряемой тысячами атмосфер. Находясь под столь большим давлением, молекулы прочно связанной воды сильно сближены, что меняет многие свойства воды. Она приобретает качества как бы твердого тела.. Рыхло связанную воду почва удерживает с меньшей силой, ее свойства не так резко отличны от свободной воды. Тем не менее сила притяжения еще настолько велика, что эта вода не подчиняется силе земного притяжения и по ряду физических свойств отличается от свободной воды.

Капиллярная скважность обусловливает впитывание и удержание в подвешенном состоянии влаги, приносимой атмосферными осадками. Проникновение влаги по капиллярным порам в глубь почвы осуществляется крайне медленно. Водопроницаемость почвы обусловлена в основном некапиллярной скважностью. Диаметр этих пор настолько велик, что влага не может в них удерживаться в подвешенном состоянии и беспрепятственно просачивается в глубь почвы.

При поступлении влаги на поверхность почвы сначала идет насыщение почвы водой до состояния полевой влагоемкости, а затем через насыщенные водой слои возникает фильтрация по некапиллярным скважинам. По трещинам, ходам землероек и другим крупным скважинам вода может проникать в глубь почвы, опережая насыщение водой до величины полевой влагоемкости.

Чем выше некапиллярная скважность, тем выше и водопроницаемость почвы.

В почвах кроме вертикальной фильтрации существует горизонтальное внутрипочвенное передвижение влаги. Поступающая в почву влага, встречая на своем пути слой с пониженной водопроницаемостью, передвигается внутри почвы над этим слоем в соответствии с направлением его уклона.

Взаимодействие с твёрдой фазой

Основная статья: Почвенный поглощающий комплекс

Почва может удерживать поступившие в неё вещества по разным механизмам (механическая фильтрация, адсорбция мелких частиц, образование нерастворимых соединений, биологическое поглощение), важнейшим из которых является ионный обмен между почвенным раствором и поверхностью твёрдой фазы почвы. Твёрдая фаза за счёт сколов кристаллической решётки минералов, изоморфных замещений , наличия карбоксильных и ряда других функциональных групп в составе органического вещества заряжена преимущественно отрицательно, поэтому наиболее ярко выражена катионообменная способность почвы. Тем не менее, положительные заряды, обуславливающее анионный обмен, в почве также присутствуют.

Вся совокупность компонентов почвы, обладающих ионообменной способностью, называется почвенным поглощающим комплексом (ППК). Входящие в состав ППК ионы носят название обменных или поглощённых. Характеристикой ППК является ёмкость катионного обмена (ЕКО) - общее количество обменных катионов одного рода, удерживаемых почвой в стандартном состоянии - а также сумма обменных катионов, характеризующая природное состояние почвы и не всегда совпадающая с ЕКО.

Отношения между обменными катионами ППК не совпадают с отношениями между теми же катионами в почвенном растворе, то есть ионный обмен протекает селективно. Предпочтительнее поглощаются катионы с более высоким зарядом, а при их равенстве - с большей атомной массой , хотя свойства компонентов ППК могут несколько нарушать эту закономерность. Например, монтмориллонит поглощает больше калия , чем протонов водорода , а каолинит - наоборот.

Обменные катионы являются одним из непосредственных источников минерального питания растений, состав ППК отражается на образовании органоминеральных соединений, структуре почвы и её кислотности.

Почвенная кислотность

Почвенный воздух.

Почвенный воздух состоит из смеси различных газов:

  1. кислород, который поступает в почву из атмосферного воздуха; содержание его может меняться в зависимости от свойств самой почвы (её рыхлости, например), от количества организмов, использующих кислород для дыхания и процессов метаболизма;
  2. углекислота, которая образуется в результате дыхания организмов почвы, то есть в результате окисления органических веществ;
  3. метан и его гомологи (пропан, бутан), которые образуются в результате разложения более длинных углеводородных цепей;
  4. водород;
  5. сероводород;
  6. азот; более вероятно образование азота в виде более сложных соединений (например, мочевины)

И это далеко не все газообразные вещества, которые составляют почвенный воздух. Его химический и количественный состав зависят от содержащихся в почве организмов, содержания в ней питательных веществ, условий выветривания почвы и др.

Живые организмы в почве

Почва - это среда обитания множества организмов. Существа, обитающие в почве, называются педобионтами. Наименьшими из них являются бактерии , водоросли , грибки и одноклеточные организмы , обитающие в почвенных водах. В одном м³ может обитать до 10¹⁴ организмов. В почвенном воздухе обитают беспозвоночные животные , такие как клещи , пауки , жуки , ногохвостки и дождевые черви . Они питаются остатками растений , грибницей и другими организмами. В почве обитают и позвоночные животные , одно из них - крот . Он очень хорошо приспособлен к обитанию в абсолютно тёмной почве, поэтому он глухой и практически слепой .

Неоднородность почвы приводит к тому, что для организмов разных размеров она выступает как разная среда.

  • Для мелких почвенных животных, которых объединяют под названием нанофауна (простейшие , коловратки , тихоходки , нематоды и др.), почва - это система микроводоемов.
  • Для дышащих воздухом несколько более крупных животных почва предстает как система мелких пещер. Таких животных объединяют под названием микрофауна. Размеры представителей микрофауны почв - от десятых долей до 2-3 мм. К этой группе относятся в основном членистоногие: многочисленные группы клещей , первичнобескрылые насекомые (коллемболы , протуры, двухвостки), мелкие виды крылатых насекомых, многоножки симфилы и др. У них нет специальных приспособлений к рытью. Они ползают по стенкам почвенных полостей при помощи конечностей или червеобразно извиваясь. Насыщенный водяными парами почвенный воздух позволяет дышать через покровы. Многие виды не имеют трахейной системы. Такие животные очень чувствительны к высыханию.
  • Более крупных почвенных животных, с размерами тела от 2 до 20 мм, называют представителями мезофауны. Это личинки насекомых, многоножки , энхитреиды, дождевые черви и др. Для них почва - плотная среда, оказывающая значительное механическое сопротивление при движении. Эти относительно крупные формы передвигаются в почве либо расширяя естественные скважины путём раздвигания почвенных частиц, либо роя новые ходы.
  • Мегафауна или макрофауна почв - это крупные землерои, в основном из числа млекопитающих. Ряд видов проводит в почве всю жизнь (слепыши, слепушонки , цокоры , кроты Евразии, златокроты Африки, сумчатые кроты Австралии и др.). Они прокладывают в почве целые системы ходов и нор. Внешний облик и анатомические особенности этих животных отражают их приспособленность к роющему подземному образу жизни.
  • Кроме постоянных обитателей почвы, среди крупных животных можно выделить большую экологическую группу обитателей нор (суслики , сурки , тушканчики , кролики , барсуки и т. п.). Они кормятся на поверхности, но размножаются, зимуют, отдыхают, спасаются от опасности в почве. Целый ряд других животных использует их норы, находя в них благоприятный микроклимат и укрытие от врагов. Норники обладают чертами строения, характерными для наземных животных, но имеют ряд приспособлений, связанных с роющим образом жизни.

Пространственная организация

В природе практически не бывает таких ситуаций, чтобы на много километров простиралась какая-нибудь одна почва с неизменными в пространстве свойствами. При этом различия почв обусловлены различиями в факторах почвообразования.

Закономерное пространственное размещение почв на небольших территориях называется структурой почвенного покрова (СПП). Исходной единицей СПП является элементарный почвенный ареал (ЭПА) - почвенное образование, внутри которого отсутствуют какие-либо почвенно-географические границы. Чередующиеся в пространстве и в той или иной степени генетически связанные ЭПА образуют почвенные комбинации.

Почвообразование

Почвообразующие факторы :

  • Элементы природной среды: почвообразующие породы, климат, живые и отмершие организмы, возраст и рельеф местности,
  • а также антропогенная деятельность, оказывающие существенное влияние на почвообразование.

Первичное почвообразование

В русском почвоведении приведена концепция , что любая субстратная система, обеспечивающая рост и развитие растений «от семени до семени», есть почва. Идея эта дискуссионная, поскольку отрицает докучаевский принцип историчности, подразумевающий определённую зрелость почв и разделение профиля на генетические горизонты, но полезна в познании общей концепции развития почв.

Зачаточное состояние профиля почв до появления первых признаков горизонтов можно определять термином «инициальные почвы» . Соответственно выделяется «инициальная стадия почвообразования» - от почвы «по Вески» до того времени, когда появится заметная дифференциация профиля на горизонты, и можно будет прогнозировать классификационный статус почвы. За термином «молодые почвы» предложено закрепить стадию «молодого почвообразования» - от появления первых признаков горизонтов до того времени, когда генетический (точнее, морфолого-аналитический) облик будет достаточно выраженным для диагностики и классификации с общих позиций почвоведения.

Генетические характеристики можно давать и до достижения зрелости профиля, с понятной долей прогностического риска, например, - «инициальные дерновые почвы»; «молодые проподзолистые почвы», «молодые карбонатные почвы». При таком подходе номенклатурные трудности разрешаются естественно, на базе общих принципов почвенно-экологического прогнозирования в соответствии с формулой Докучаева -Йенни (представление почвы как функции факторов почвообразования: S = f(cl, o, r, p, t …)).

Антропогенное почвообразование

В научной литературе для земель после горных работ и других нарушений почвенного покрова закрепилось обобщённое название «техногенные ландшафты», а изучение почвообразования в этих ландшафтах оформилось в «рекультивационное почвоведение» . Был предложен также термин «технозёмы» , по сути представляющий попытку объединить Докучаевскую традицию «-зёмов» с техногенными ландшафтами.

Отмечается, что логичнее применять термин «технозём» к тем почвам, которые специально создаются в процессе технологии горных работ путём разравнивания поверхности и насыпания специально снятых гумусовых горизонтов или потенциально плодородных грунтов (лёсса). Использование этого термина для генетического почвоведения вряд ли оправданно, так как итоговым, климаксным продуктом почвообразования будет не новый «-зём», а зональная почва, например, дерново-подзолистая, или дерново-глеевая.

Для техногенно-нарушенных почв предлагалось использовать термины «инициальные почвы» (от «нуль - момента» до появления горизонтов) и «молодые почвы» (от появления до оформления диагностических признаков зрелых почв), указывающие на главную особенность таких почвенных образований - временные этапы их эволюции из недифференцированных пород в зональные почвы.

Классификация почв

Единой общепринятой классификации почв не существует. Наряду с международной (Классификация почв ФАО и сменившая её в 1998 году WRB) во многих странах мира действуют национальные системы классификации почв, часто основанные на принципиально разных подходах.

В России к 2004 году специальной комиссией Почвенного института им. В. В. Докучаева, руководимой Л. Л. Шишовым, подготовлена новая классификация почв, являющаяся развитием классификации 1997 года. Однако российским почвоведами продолжает активно использоваться и классификация почв СССР 1977 года.

Из отличительных особенностей новой классификации можно назвать отказ от привлечения для диагностики факторно-экологических и режимных параметров, трудно диагностируемых и часто определяемых исследователем чисто субъективно, фокусирование внимания на почвенном профиле и его морфологических особенностях. В этом ряд исследователей видят отход от генетического почвоведения, делающего основной упор на происхождении почв и процессах почвообразования. В классификации 2004 года вводятся формальные критерии отнесения почвы к определённому таксону, привлекается понятие диагностического горизонта, принятое в международной и американской классификациях. В отличие от WRB и американской Soil Taxonomy, в российской классификации горизонты и признаки не равноценны, а строго ранжированы по таксономической значимости. Бесспорно важным нововведением классификации 2004 года стало включение в неё антропогенно-преобразованных почв.

В американской школе почвоведов используется классификация Soil Taxonomy, имеющая распространение также в других странах. Характерной её особенностью является глубокая проработка формальных критериев отнесения почв к тому или иному таксону. Используются названия почв, сконструированные из латинских и греческих корней. В классификационную схему традиционно включаются почвенные серии - группы почв, отличных лишь по гранулометрическому составу, и имеющие индивидуальное название - описание которых началось ещё при картировании Почвенным бюро территории США в начале XX века.

Классификация почв - система разделения почв по происхождению и (или) свойствам.

  • Тип почвы - основная классификационная единица, характеризуемая общностью свойств, обусловленных режимами и процессами почвообразования, и единой системой основных генетических горизонтов.
    • Подтип почвы - классификационная единица в пределах типа, характеризуемая качественными отличиями в системе генетических горизонтов и по проявлению налагающихся процессов, характеризующих переход к другому типу.
      • Род почвы - классификационная единица в пределах подтипа, определяемая особенностями состава почвенно-поглощающего комплекса, характером солевого профиля, основными формами новообразований.
        • Вид почвы - классификационная единица в пределах рода, количественно отличающаяся по степени выраженности почвообразовательных процессов, определяющих тип, подтип и род почв.
          • Разновидность почвы - классификационная единица, учитывающая разделение почв по гранулометрическому составу всего почвенного профиля.
            • Разряд почвы - классификационная единица, группирующая почвы по характеру почвообразующих и подстилающих пород.

Закономерности распространения

Климат как фактор географического распространения почв

Климат - один из важнейших факторов почвообразования и географического распространения почв - в значительной степени определяется космическими причинами (количеством энергии, получаемой земной поверхностью от Солнца). С климатом связано проявление самых общих законов географии почв. Он влияет на почвообразование как непосредственно, определяя энергетический уровень и гидротермический режим почв, так и косвенно, воздействуя на другие факторы почвообразования (растительность , жизнедеятельность организмов, почвообразующие породы и т. д.).

Непосредственное влияние климата на географию почв проявляется в разных типах гидротермических условий почвообразования. Тепловой и водный режимы почв оказывают влияние на характер и интенсивность всех физических, химических и биологических процессов, протекающих в почве. Ими регулируются процессы физического выветривания горных пород , интенсивность химических реакций , концентрация почвенного раствора, соотношение твёрдой и жидкой фазы, растворимость газов . Гидротермические условия влияют на интенсивность биохимической деятельности бактерий , скорость разложения органических остатков, жизнедеятельность организмов и другие факторы, поэтому в разных районах страны с неодинаковым тепловым режимом скорость выветривания и почвообразования, мощность почвенного профиля и продуктов выветривания существенно различны.

Климат определяет наиболее общие закономерности распространения почв - горизонтальную зональность и вертикальную поясность.

Климат является результатом взаимодействия климатообразующих процессов, протекающих в атмосфере и деятельном слое (океанах , криосфере , поверхности суши и биомассе) - так называемой климатической системе, все компоненты которой непрерывно взаимодействуют друг с другом, обмениваясь веществом и энергией. Климатообразующие процессы можно разделить на три комплекса: процессы теплооборота , влагооборота и атмосферной циркуляции.

Значение почв в природе

Почва как среда обитания живых организмов

Почва обладает плодородием - является наиболее благоприятным субстратом или средой обитания для подавляющего большинства живых существ - микроорганизмов, животных и растений. Показательно также, что по их биомассе почва (суша Земли) почти в 700 раз превосходит океан, хотя на долю суши приходится менее 1/3 земной поверхности.

Геохимические функции

Свойство различных почв по-разному аккумулировать разнообразные химические элементы и соединения, одни из которых необходимы для живых существ (биофильные элементы и микроэлементы , различные физиологически-активные вещества), а другие являются вредными или токсичными (тяжёлые металлы , галогены , токсины и пр.), проявляется на всех живущих на них растениях и животных, включая и человека. В агрономии, ветеринарии и медицине такая взаимосвязь известна в виде так называемых эндемических болезней, причины которых были раскрыты только после работ почвоведов.

Почва оказывает существенное влияние на состав и свойства поверхностных, подземных вод и всю гидросферу Земли. Фильтруясь через почвенные слои вода извлекает из них особый набор химических элементов, характерный для почв водосборных территорий. А поскольку основные хозяйственные показатели воды (её технологическая и гигиеническая ценность) определяются содержанием и соотношением этих элементов, то нарушение почвенного покрова проявляется также в изменении качества воды.

Регуляция состава атмосферы

Почва является главным регулятором состава атмосферы Земли. Обусловлено это деятельностью почвенных микроорганизмов, в огромных масштабах продуцирующих разнообразные газы -

Почва - это важнейший элемент биосферы Земли, связующее звено живой и неживой природы. Не будь плодородной почвы на планете, растительный и животный мир был бы невероятно бедным, а рельеф земного шара - однообразным. Рассмотрим, как образуется почва, и какие факторы влияют на ее формирование.

Образование почвы

Почвообразование - процесс очень длительный и непрерывный. В его основе лежит взаимодействие живой и неживой природы.

Абсолютно все почвы на нашей планете, независимо от их вида, образованы из горных пород. Благодаря им в грунте концентрируются минеральные соли. В течение многих сотен и тысяч лет происходит разрушение горных пород. На этот процесс оказывают влияние следующие факторы:

  • вода;
  • воздух;
  • солнечное тепло;
  • живые организмы.

Мельчайшие частицы горных пород скапливаются в расщелинах скал, скатываются в низины. Постепенно на них начинает прорастать трава, мелкие кустарники. Корни растений продолжают расширять пространство, улучшают воздухообмен в почве.

Рис. 1. Растения на скалах

Активное участие в образовании почвы принимают и живые существа: микроорганизмы, насекомые, поземные животные. В результате их жизнедеятельности происходит рыхление почвы, смешивание ее с растительными остатками.

Образование гумуса

Растительные и животные остатки разлагаются и формируют плодородный почвенный слой – гумус. Его толщина совсем небольшая - до 2 см.

ТОП-4 статьи которые читают вместе с этой

Гумус - это самая важная часть любой почвы, только благодаря ему создаются условия для роста растений. Чем его больше в почве, тем богаче растительность.

Рис. 2. Гумус

Над созданием гумуса трудятся все организмы, живущие в земле: различные бактерии, водоросли, микрогрибы, насекомые. Они тщательно измельчают сгнившие растения и подготавливают их для дальнейшей переработки. Большую роль в создании гумуса играют дождевые черви. Они пропускают через себя почву, благодаря чему она существенно обогащается органическими и минеральными веществами.

Гумус - это природное богатство, которое невозможно создать вручную. Даже сейчас, в самых современных лабораториях, ученым не удается в точности повторить уникальный состав гумуса. Только многолетняя работа матушки-природы способна сотворить такое чудо.

Рис. 3. Песчаные почвы - самые бедные

Свойства почвы

Самым важным свойством любого почвенного покрова является его плодородие - способность обеспечить полноценный рост и развитие растений.

К физическим свойствам почвы относят:

  • кислотность;
  • микробный состав;
  • влагоемкость - способность впитывать и удерживать влагу;
  • механический состав - размер и плотность частичек почвы.

Что мы узнали?

Из статьи по программе за 3 класс по окружающему миру мы узнали, как происходит почвообразование, как формируется плодородный слой, как в почве образуются минеральные соли. Почвенный покров очень важен для жизни на планете, а на его создание влияет множество факторов.

Оценка доклада

Средняя оценка: 4.1 . Всего получено оценок: 8.

Почвообразование – это сложный природный процесс образования почвы из горной породы под воздействием факторов почвообразования в пределах биогеосферы Земли.

Процессы почвообразования

Почвообразование – важное звено в процессе геологического и биологического круговорота вещества и энергии. Геологический круговорот – это процесс переноса веществ с суши в океан и обратно. Биологический круговорот – это совокупность процессов обмена веществом и энергией между почвой, материнской горной породой, атмосферой и биотой.

Почвообразование – это специфический биосферный процесс, в результате которого почва приобретает ряд специфических характеристик, отсутствующих в материнской почвообразующей породе и отличающих почву от всех других компонентов биосферы. К числу наиболее существенных характеристик такого рода относят наличие в почве специфического органического вещества – почвенного гумуса и биофильных элементов. Биофильные элементы – это элементы, которые живые организмы поглощают из геохимической среды организмами и используют их в процессах обеспечения жизни. К ним относятся: макроэлементы - N, С, О, Н, Са, Mg, Na, К, Р, S, Cl, Si, Fe и микроэлементы - Сu, Со, Mn, Zn, V, Ni, Mo, Sr, В, Se, F, Br, I.

В результате почвообразования почва приобретает специфическое строение. Почвенный профиль представляет собой систему горизонтов , более или менее параллельных дневной поверхности, формирование которых обусловлено механизмами почвообразования (рис. 2.1).

Рисунок 2.1. Почвенный профиль (фотобанк «Геофото»)

2.1.1. Основные факторы почвообразования

Почвообразовательный процесс протекает под влиянием внешних по отношению к почве природных условий – факторов почвообразования. Факторы почвообразования следует разделить на два типа: природные (естественные) и антропогенные (искусственные ).

Природные (естественные) факторы .

Выделяют шесть природных факторов почвообразования:

1. материнские, или почвообразующие горные породы;

2. климат;

3. рельеф;

4. растения и живые организмы;

5. земное тяготение

Все природные факторы являются равнозначными. Каждый из них оказывает свое специфическое влияние на почвообразование и без участия какого-либо из них почвообразование невозможно.

Почвообразующая порода является той основой, из которой формируется почва. Минеральная часть в подавляющем большинстве почв составляет 90 –95% почвенной массы. Выделяют две основные функции материнской горной породы в почвообразовании: формирование состава почвенных масс и подстилающей породы. Состав горных пород определяет химический, минералогический, гранулометрический состав будущих почв (рис. 2.2.), например, наиболее богатые почвы формируются на карбонатных суглинках, а на песках они беднее, однако теплее и лучше аэрированы. Порода в значительной степени определяет и скорость почвообразования. Материнские породы на территории России большей частью представлены четвертичными осадочными смешанными горными породами.

Рисунок 2.2. Функции и роль почвообразующей горной породы в формировании почв.

Климатический фактор определяет обеспеченность почвообразования влагой (атмосферные осадки) и энергией (солнечная радиация – свет и тепло). Климат на различных широтах земного шара различен. Различают арктический, субарктический, умеренный, субтропический и тропический климат. В соответствии с климатическими условиями различают и растительные зоны, отличающиеся количеством растительного органического вещества, и, соответственно, скоростью и продолжительностью биологического круговорота и тип процесса почвообразования. Благоприятные для жизни гидротермические условия обеспечивают протекание в почве процессов, влияют на сообщества растительных и животных организмов, увеличивая их продуктивность, что в конечном итоге влияет на интенсивность почвообразования. Известно, что при повышении температуры на 10 о С скорость химических реакций увеличивается в 2–4 раза (правило Вант-Гоффа) (табл. 2.1.).

Таблица 2.1. Суммы активных температур в различных географических поясах

*Сумма активных температур – показатель, характеризующий количество тепла и выражающийся суммой средних суточных температур воздуха или почвы, превышающий определённый порог: 0, 5, 10 о С или биологический минимум температуры, необходимой для развития растения. Например, потребность некоторых культур в тепле: яровая пшеница 1200–1700; овёс –1000÷1600; просо – 1410÷1950; гречиха – 1200÷1400; кукуруза – 1100÷2900; картофель – 1200÷1800.

Водный режим географических поясов определяют по отношению среднегодовой суммы осадков к годовой испаряемости – так называемый коэффициент увлажнения (КУ) Г.Н. Высоцкого-Н.Н. Иванова. Он является наиболее объективным показателем атмосферного увлажнения. При КУ >1 увлажнение избыточное (наблюдается в высоких широтах – примерно к северу и к югу от 50-й параллели), а при КУ<1 – недостаточное увлажнение (например, в пустынях КУ практически приближается к нулю).

Рельеф определяется характером чередования пониженных и повышенных участков суши. Различают три вида рельефа: микрорельеф (колебания высот до нескольких метров); мезорельеф (колебания высот до нескольких десятков метров); макрорельеф (колебания высот от нескольких десятков до нескольких сот метров). Влияние рельефа связано с количеством поступающего на поверхность почвы света, тепла и влаги. На степень освещения и нагрева почв влияет угол уклона рельефа, экспозиция уклона, крутизна (на южном склоне больше тепла, чем на северном). Рельеф перераспределяет полученную из атмосферы воду. Больше всего воды поступает в низинную часть рельефа. Все поднятия на земле – положительные элементы рельефа, на них меньше всего влаги. Обычно сверху находится грубая механическая порода (валуны, камень, гравий), снизу более мелкий и тонкий механический состав (суглинки, лёсы). Положительные элементы рельефа не участвуют в процессах почвообразования путём грунтовых вод, а отрицательные участвуют. Рельеф оказывает влияние на климатические условия, а соответственно на жизнь растений, животных, микроорганизмов, на перераспределение тепла и влаги, что сказывается на процессах почвообразования в целом. Кроме этого рельеф обусловливает перемещение почвенных масс по склону в результате эрозионных и аккумулятивных процессов.



Функции растительных и живых организмов в почвообразовании весьма разнообразны. Почвообразование является биогенным процессом, и оно начинается с момента появления растений и живых организмов на массивно-кристаллических или осадочных породах. Растительные и живые организмы являются единственным источником органического вещества, которое служит материалом для образования почвенного гумуса. Другая важная функция организмов базируется на способности живого вещества к избирательному поглощению элементов из почв. Благодаря этому свойству организмы в существенной степени определяют химический состав почв.На рис. 2.2. представлены растительные и живые организмы, без участия которых невозможен почвообразовательный процесс.

Зеленые низшие и высшие растения используют в процессе роста радиационную энергию Солнца, вовлекая в биологический круговорот огромное количество химических элементов, ежегодно формируя около 233 млрд. т органического вещества на поверхности и внутри почвы. Корни растений чисто механически разрыхляют почву, увеличивая водо- и воздухопроницаемость пород, изменяют своими выделениями свойства материнских пород, что способствует развитию микроорганизмов.

Микроорганизмы за счет выделяемых ими ферментов разлагают органические вещества и образуют органо-минеральные соединения – гумус. По данным Е.Н. Мишустина (1987) количество микроорганизмов колеблется от нескольких сотен в 1 г дерново-подзолистых почв до 3 миллиардов в черноземных почвах. Масса микроорганизмов может составлять от 3 до 8 т/га в черноземных почвах.

Грибы разлагают клетчатку, лигнин и другие органические вещества почвы и также способствуют образованию гумуса.

Дождевые черви (живут на глубинах до 12 м), проделывая ходы в почве, рыхлят и аэрируют ее, что способствует развитию корневой системы растений, кроме того, перерабатывая органические остатки, образуют гумус. За один год черви, живущие на 1 га способны переработать до 100 т органических остатков и перемешать ~120 т земли.

Насекомые и животные также активно разрушают органическое вещество, минерализуют его и, тем самым, выступают посредниками в обмене между почвой, атмосферой, обеспечивая круговорот элементов питания.

Земное тяготение. А.А. Роде и В.Н. Смирнов считают гравитационное поле Земли фактором, который определяет нисходящий процесс передвижения жидких и твердых веществ.

Время . Возраст почв исчисляется с начала почвообразовательного процесса. Почва – природное, постоянно изменяющееся природное тело. Считается, что тот вид, который сегодня имеют все существующие на Земле почвы, представляет собой лишь одну из стадий в длительной и непрерывной цепи их эволюции, а отдельные теперешние почвенные образования, в прошлом представляли другие формы и в будущем могут подвергнуться существенным превращениям даже без резких изменений внешних условий.

Различают абсолютный и относительный возраст почв. Абсолютным возрастом почв называют промежуток времени, прошедшей с момента возникновения почвы до нынешней стадии ее развития. Почва возникла тогда, когда материнская порода вышла на дневную поверхность и стала подвергаться процессам почвообразования. Например, в Северной Европе процесс современного почвообразования стал развиваться после окончания последнего ледникового периода.

Однако в пределах разных частей суши, которые одновременно освободились от водного или ледникового покрова, почвы далеко не всегда будут иметь в каждый данный момент одну и ту же стадию своего развития. Причиной этого могут быть различия в составе почвообразующих пород, в рельефе, растительности и других обстоятельствах. Относительным возрастом почв называют различие в стадиях развития почв на одной общей территории, имеющей одинаковый абсолютный возраст.

Время развития зрелого почвенного профиля для разных условий – от нескольких сотен до нескольких тысяч лет. (Согласно данным, Л. Александровского увеличение мощности гумусового горизонта до 15 см происходит приблизительно за 100 лет). Возраст территории вообще и почвы в частности, а также изменения условий почвообразования в процессе их эволюции оказывают существенное влияние на строение, свойства и состав почвы. При сходных географических условиях почвообразования почвы, имеющие неодинаковые возраст и историю, могут существенно различаться и принадлежать к разным классификационным группам.

Итак, можно констатировать, что все естественные факторы почвообразования взаимосвязаны и действуют одновременно, оказывая влияние не только на интенсивность биологического круговорота и почвообразования, но и друг на друга. Так, изменение микроклиматических условий может вы­звать смену растительного покрова и почв. Почвы в свою оче­редь могут оказать воздействие на смену растительности и из­менить микроклиматическую обстановку

Антропогенные (искусственные) факторы . Влияние хозяйственной деятельности человека на почвооб­разование проявляется в регулировании состава и характера растительности, изменении свойств самих почв и процессов, протекающих в них. На огромных лесных и сельскохозяйствен­ных территориях производят механизированную обработку почв, при которой уничтожается естественная растительность, эксплуатируются леса, проводятся мелиоративные работы, вно­сятся органические, бактериальные и минеральные удобрения. Происходит изменение естественных физических и химических свойств почв, приостанавливаются нежелательные для чело­века направления процессов почвообразования, изменяются биологические свойства. При увеличении, например, содержа­ния кальция (известковании) в почве становится больше орга­нического вещества, меняется реакция среды, возрастает коли­чество микроорганизмов и элементов питания; в результате повышается плодородие почвы. Осушение приостанавливает бо­лотный процесс, а орошение в засушливых районах создает условия для накопления органического вещества в почвах, по­вышая плодородие почв и урожай растений.

В результате хозяйственной деятельности человека изменя­ются характер и интенсивность биологического круговорота ве­ществ, почвы дополнительно получают органическое вещество и элементы питания, формируется мощный пахотный горизонт, создаются окультуренные почвы с повышенным плодородием. Различной хозяйственной деятельностью охвачено 500 млн. га земель. Однако применение неправильных приемов ведения хо­зяйства вызывает развитие неблагоприятных почвообразова­тельных процессов: заболачивания, засоления, разрушения ор­ганического вещества и потери элементов питания.

2.1.3. Стадии почвообразования и эволюция почв

Образование почв и, соответственно, биологического выветривания горных пород, началось с появлением жизни на Земле. А до этого происходили процессы физического и химического выветривания горных пород.

В процессе почвообразования каждая почва проходит ряд последовательных стадий, направление, длительность и интенсивность которых определяются конкретным набором факторов почвообразования в каждой конкретной точке Земли. Процесс почвообразования подразделяют на ряд стадий. Историческая реконструкция эволюции почв выглядит следующим образом.

I. Стадия начального или первичного почвообразования характеризуется тем, что в тонкой приповерхностной корочке поселились микроорганизмы, и начался почвообразовательный процесс. Свойства почвенного тела, характерные для развитых почв, еще не сформировались. Первыми на горных породах поселились бактерии и сине-зеленые водоросли. Затем – диатомовые водоросли и грибная микрофлора. Часть органических соединений вступала в реакцию с минеральными веществами с образованием органо-минеральных комплексов. Постепенно улучшались условия минерального питания живых организмов за счет повышения доступности минеральных элементов благодаря продолжающимся процессам выветривания и развивающейся поглотительной способности почв. Мощность почвенного профиля на начальной стадии образования невелика (обычно несколько сантиметров), а сам профиль слабо дифференцирован на горизонты и их число невелико. В слабой степени выражена аккумуляция биофильных элементов.

II. Стадия преобразования горных пород . В горных породах продолжало накапливаться органическое вещество, развивалась поглотительная способность. Благодаря увеличению степени рыхлости пород в них постоянно содержались воздух и вода. Это создавало условия для активного химического выветривания составляющих пород минералов; возросло количество и доступность живым организмам минеральных элементов; формировались водные растворы различного ионного состава, которые передвигались в толще рыхлых пород, вступая в химические реакции; изменился температурный режим рыхлых пород по сравнению с плотными породами и т.д. Рыхлые осадочные обломочные породы с дочетвертичными почвами в последний четвертичный геологический период подверглись очередному переотложению ледниками, ледниковыми, талыми и дождевыми водами, ветром, морем, реками. Образовались новые почвообразующие породы. Эта стадия продолжалась до формирования зрелой почвы с характерным для нее профилем и набором определенных свойств.

III. Завершающая стадия формирования . Перечислим основные изменения горных пород, на завершающем этапе их превращения в почву под влиянием агентов почвообразования:

Образование нового органического вещества (гумуса) в верхних слоях материнской породы;

Увеличилась концентрация биофильных элементов и их доступность растениям в верхних частях породы. Элементы включались в состав растений. В результате процессов жизни азотфиксирующих, нитрифицирующих и аммонифицирующих микроорганизмов в растениях произошло накопление соединений азота как источника питания растений. В почвах установился определенный пищевой режим благодаря биологическому (малому) круговороту веществ в системе почва → растения → животные организмы → почва. Однако из этого круговорота часть элементов ежегодно вовлекается в геологический (большой) круговорот веществ в природе;

Сформировалось важное свойство почв – поглотительная способность, которая определяется коллоидными свойствами органической и минеральной частей твердой фазы почв, ее пористостью, большой удельной поверхностью гранулометрических компонентов, реакционной химической способностью твердой фазы и почвенных растворов, особенностями усвоения элементов живыми организмами.

Установились реакция почв (кислая или щелочная), соотношение протекающих в почве окислительных и восстановительных растворов.

Установились водные, воздушные, тепловые свойства и режимы почв в соответствии с климатическими условиями, гранулометрическим составом твердой фазы, ее плотностью, структурой и другими физическими свойствами.

Сформировались характеристичные микробиологические ценозы с различным соотношением групп микроорганизмов, численностью микрофлоры

В результате продуцирования и выделения в окружающую среду (в почву и атмосферу) растениями и микроорганизмами физиологически активных веществ, угнетающих или, напротив, способствующих росту, созреванию других растений и микроорганизмов, установился аллелопатический (от греч. allelon взаимно и pathos – страдание) режим. Первоначально аллелопатию считали исключительно отрицательным взаимодействием. Об этом свидетельствует и выбор термина, предложенного австрийским физиологом растений X. Молишем в 1937. Однако установлено, что летучие выделения ароматических трав благоприятно действуют на растущие рядом овощи: одуванчик выделяет большое количество газа этилена, ускоряющего созревание плодов, его соседство полезно яблоням и овощным культурам. Базилик душистый улучшает вкус томатов, а укроп – капусты. Шалфей, иссоп, петрушка, укроп, лаванда, чабер, чабрец, майоран, ромашка, кервель – хорошо действуют почти на все овощи. Яснотка белая (глухая крапива), валериана, тысячелистник делают овощные растения более здоровыми и устойчивыми к болезням.

Сформировался почвенный ферментативный комплекс; ферменты (энзимы) катализируют многие важнейшие почвенные биохимические реакции, в том числе процессы гумусообразования, превращения азот- и фосфорсодержащих органических соединений, веществ углеводного характера и др.

На последней стадии формирования почва приходит в состояние равновесия с комплексом факторов почвообразования. Продолжительность этой стадии может быть неопределенно долгой. В стадии равновесия поддерживается более или менее постоянное динамическое равновесие между почвой и средой, т.е. существующими факторами почвообразования.

Рисунок 2.3. Общие представление о процессах почвообразования.

Существует и другая историческая реконструкция стадий почвообразования:

I – cтадия начального почвообразования . Обычно весьма длительна. Начальное почвообразование сменяется стадией развития почвы.

II – cтадия развития почвы протекает с нарастающей интенсивностью, охватывая все большую толщу почвообразующей породы. К концу этой стадии формируется зрелая почва с характерным для нее профилем и комплексом свойств. Процесс развития почв постепенно замедляется и приходит к некоторому равновесному состоянию, когда комплекс факторов почвообразования и свойства почв соответствуют друг другу и находятся в динамическом равновесии.

III – cтадия динамического равновесия называется климаксной и может длиться неопределенно долго. На каком-то этапе климаксная стадия сменяется эволюцией почвы.

IV – cтадия эволюции почвы наступает либо в результате саморазвития экосистемы, в которую она входит в качестве одного из компонентов, либо в результате изменения одного или нескольких факторов почвообразования – климата, растительности, характера грунтового увлажнения, под влиянием распашки территории, орошения или осушения и т.д. Стадия эволюции почвы может быть сопоставлена со стадиями развития и ведет к новому климаксному состоянию. При этом образуется новая почва с новым профилем и новым набором характеристик.

Примеры эволюции одних типов почв в другие многочисленны. Например, формирование луговых почв из болотных при обсыхании территории; формировании каштановых или черноземных почв при остепнении луговых почв и т.д. В этом случае почва образуется не непосредственно из почвообразующей породы, а из предшествовавшего вида почвы. Циклов почвообразования на одном и том же субстрате может быть несколько. Подобные почвы называют полигенетическими. В профиле полигенетических почв обычны унаследованные реликтовые черты и другие признаки, не связанные с современным этапом почвообразования. Эволюция почв может идти в разных направлениях: по пути нарастания мощности почвы или по пути ее уменьшения, по пути засоления или рассоления, по пути деградации почвенного плодородия или его нарастания.

Процессы почвообразования можно рассматривать как совокупность циркуляционных явлений превращений и перемещения вещества и энергии при взаимодействии большого геологического и малого биологического круговоротов в пределах педосферы Земли (от греч. педон – почва ) – синоним почвенного покрова ввел С.А. Захаров. На рис. 2.4. показано место педосферы среди других природных сфер.

Рисунок 2.4. Взаимоотношение сфер и положение педосферы (почв) среди других природных тел.

2.1.2. Элементарные почвообразовательные процессы

Почвообразовательный процесс на поверхности земли протекает под влиянием огромного разнообразия сочетаний факторов почвообразования, что приводит к разнообразию типов почвообразования и соответствующих им почв. В то же время в различных почвах повторяются одни и те же процессы, однокачественные по существу, но различающиеся по интенсивности и в деталях своего проявления. Примером таких процессов может служить накопление в почве гумуса (гумусонакопление), проявляющееся во всех почвах, хотя и на разных качественном и количественном уровнях. Другим примером может служить процесс рассоления – вынос нисходящими токами воды легкорастворимых солей из профиля изначально засоленной почвы. Важно подчеркнуть, что эти процессы являются специфическими почвенными процессами.

Такие общие для разных типов почвообразования процессы получили название элементарных почвообразовательных процессов . Эти процессы являются довольно сложными по своей природе, и понятие «элементарный» не следует трактовать буквально. Список этих процессов в настоящее время нельзя считать завершенным, как нельзя считать полностью установленными методологию и критерии их выделения. Однако сам принцип расчленения общего процесса почвообразования на составляющие является вполне правомерным и перспективным. В настоящее время выделено несколько десятков элементарных почвообразовательных процессов. Основные из них представлена ниже.

1. Биогенно-аккумулятивные процессы–процессы, протекающие в почве под непосредственным влиянием живых организмов, их остатков и их продуктов жизнедеятельности (подстилкообразование, торфообразование, гумусообразование, гумусонакопление).

2. Гидрогенно-аккумулятивные процессы –процессы, связанные с современным или прошлым влиянием грунтовых вод на почвообразование (засоление, загипсовывание, окарбоначивание (обызвесткование), оруднение, окремнение, латеритизация, плинтификация, олуговение, тирсификация, кольматаж).

3. Элювиальные процессы–процессы, связанные с разрушением или преобразованием почвенного материала в элювиальном горизонте с выносом из него продуктов разрушения или трансформации нисходящими потоками воды либо латеральными (боковыми). В результате этого элювиальный горизонт становится обедненными теми или иными соединениями и относительно обогащенными оставшимися на месте соединениями или минералами (выщелачивание, оподзоливание, лессовирование, псевдооподзоливание, псевдооглеение, осолодение, сегрегация, отбеливание, ферролиз, элювиально-гумусовый процесс, Al-Fe-гумусовый процесс, коркообразование).

4. Иллювиально-аккумулятивные процессы–процессы аккумуляции веществ в средней или нижней части профиля элювиально-дифференцированных почв. Включают в себя процессы отложения, трансформации и закрепления вынесенных из элювиального горизонта соединений. Каждому элювиальному процессу может соответствовать свой иллювиальный процесс, если элювиирование не идет за пределы почвенного профиля. (Глинисто-иллювиальный процесс, гумусо-иллювиальный процесс, железисто-иллювиальный процесс, алюмогумусо-иллювиальный процесс, железистогумусо-иллювиальный процесс, Al-Fe-гумусоилювиальный процесс, подзолисто-иллювиальный процесс, карбонатно-иллювиальный процесс, солонцово-иллювиальный процесс).

5. Метаморфические процессы–процессы трансформации породообразующих минералов in situ без элювиально-иллювиального перераспределения компонентов в почвенном профиле (сиаллитизация (оглинивание), монтмориллонитизация, гумуссиаллитизация, ферраллитизация, ферсиаллитизация, рубефикация (ферритизация), ожелезнение, оглеение, оливизация, слитизация, оструктуривание, отвердевание, мраморизация).

6. Педотурбационные процессы (педотурбации ) – группа процессов механического перемешивания почвенной массы под влиянием разнообразных факторов и сил (самомульчирование, растрескивание, криотурбация, вспучивание, пучение, биотурбация, ветровальная педотурбация, гильгаиобразование, агротурбация).

7 . Деструктивные процессы –процессы, ведущие к разрушению почвы как природного тела и в конечном итоге к уничтожению ее (эрозия, дефляция, стаскивание, погребение).



Справочники