Методы упрочнения металлов. Современные методы поверхностного упрочнения инструментов. Упрочнение пластическим деформированием

Задача упрочнения поверхностного слоя металлического изделия является достаточно актуальной во многих случаях, ведь большая часть деталей машин и различных механизмов работает под воздействием значительных механических нагрузок. Решить такую задачу позволяет как наклеп, так и нагартовка, которые, несмотря на свою схожесть, все же имеют определенные различия.

Сущность наклепа и нагартовки

Наклеп металла является одним из способов упрочнения металлического изделия. Происходит это благодаря пластической деформации, которой такое изделие подвергают при температуре, находящейся ниже температуры рекристаллизации. Деформирование в процессе наклепа приводит к изменению как внутренней структуры, так и фазового состава металла. В результате таких изменений в кристаллической решетке возникают дефекты, которые выходят на поверхность деформируемого изделия. Естественно, эти процессы приводят и к изменениям механических характеристик металла. В частности, с ним происходит следующее:

  • повышается твердость и прочность;
  • снижаются пластичность и ударная вязкость, а также сопротивляемость к деформациям, имеющим противоположный знак;
  • ухудшается устойчивость к коррозии.

Явление наклепа, если оно относится к ферромагнитным материалам (например, к железу), приводит к тому, что у металла увеличивается значение такого параметра, как коэрцитивная сила, а его магнитная проницаемость снижается. Если наклепанная область была сформирована в результате незначительной деформации, то остаточная индукция, которой характеризуется материал, снижается, а если степень деформации увеличить, то значение такого параметра резко возрастает. Из положительных последствий наклепа следует отметить и то, что с его помощью можно значительно улучшить эксплуатационные характеристики более пластичных металлов, создающих значительное трение в процессе использования.

Наклепанный слой на поверхности металлического изделия может быть сформирован как специально, тогда такой процесс является полезным, так и неумышленно, в таком случае его считают вредным. Чаще всего неумышленное поверхностное упрочнение металлического изделия происходит в процессе обработки резанием, когда на обрабатываемый металл оказывается значительное давление со стороны режущего инструмента.

Увеличение прочности приводит к тому, что поверхность металла становится и более хрупкой, что является очень нежелательным последствием обработки.

Если формирование наклепа может произойти в результате как осознанных, так и неосознанных действий, то нагартовка всегда выполняется специально и является, по сути, полноценной технологической операцией, цель которой состоит в поверхностном упрочнении металла.

Типы наклепа

Различают два основных типа наклепа, которые отличаются процессами, протекающими при его формировании в материале. Если новые фазы в металле, характеризующиеся иным удельным объемом, сформировались в результате протекания фазовых изменений, то такое явление носит название фазового наклепа. Если же изменения, произошедшие в кристаллической решетке металла, произошли из-за воздействия внешних сил, они называются деформационным наклепом.

Деформационный наклеп, в свою очередь, может быть центробежно-шариковым или дробеметным. Для выполнения наклепа первого типа на обрабатываемую поверхность воздействуют шариками, изначально располагающимися во внутренних гнездах специального обода. При вращении обода (что выполняется на максимальном приближении к обрабатываемой поверхности) шарики под воздействием центробежной силы отбрасываются к его периферии и оказывают ударное воздействие на деталь. Формирование наклепа в дробеструйных установках происходит за счет воздействия на обрабатываемую поверхность потока дробинок, перемещающихся по внутренней камере такого оборудования со скоростью до 70 м/с. В качестве таких дробинок, диаметр которых может составлять 0,4–2 мм, для наклепа могут быть использованы чугунные, стальные или керамические шарики.

Для того чтобы понимать, почему нагартовка или формирование наклепа приводят к упрочнению металла, следует разобраться в процессах, которые протекают в материале при выполнении таких процедур. При холодной пластической деформации, происходящей под воздействием нагрузки, величина которой превышает предел текучести металла, в его внутренней структуре возникают напряжения. В результате металл будет деформирован и останется в таком состоянии даже после снятия нагрузки. Предел текучести станет выше, и его значение будет соответствовать величине сформировавшихся в материале напряжений. Чтобы деформировать такой металл повторно, необходимо будет приложить уже значительно большее усилие. Таким образом, металл станет прочнее или, как говорят специалисты, перейдет в нагартованное состояние.

При холодной деформации металла, протекающей в результате воздействия соответствующего давления (в процессе, например, наклепа), дислокации, составляющие внутреннюю структуру материала, начинают перемещаться. Даже одна пара движущихся дефектных линий, сформировавшихся в кристаллической решетке, способна привести к образованию все новых и новых подобных локаций, что в итоге и повышает предел текучести материала.

Внутренняя структура металла при его деформировании в процессе выполнения наклепа или нагартовки претерпевает серьезные изменения. В частности, искажается конфигурация кристаллической решетки, а пространственное положение кристаллов, которые ориентированы беспорядочно, упорядочивается. Такое упорядочивание приводит к тому, что оси кристаллов, в которых они обладают максимальной прочностью, располагаются вдоль направления деформирования. Чем активнее будет выполняться деформирование, тем большее количество кристаллов примут подобное пространственное положение. Существует ошибочное мнение, что зерна, составляющие внутреннюю структуру металла, при его деформации измельчаются. На самом деле они только деформируются, а площадь их поверхности остается неименной.

Из всего вышесказанного можно сделать вывод о том, что в процессе выполнения нагартовки или наклепа изменяется кристаллическая структура стали или другого металла, в результате материал становится более твердым и прочным, но одновременно и более хрупким. Нагартованная сталь, таким образом, представляет собой материал, который специально был подвергнут пластической деформации для улучшения прочностных характеристик.

Нагартовка и оборудование для нее

Выполнение нагартовки изделий из стали особенно актуально в тех случаях, когда имеется необходимость повысить их устойчивость к поверхностному растрескиванию, а также предотвратить протекание в нем усталостных процессов. Отраслями промышленности, в которых нагартованные изделия зарекомендовали себя особенно хорошо, являются авиа- и автомобилестроение, нефтедобыча, нефтепереработка и строительство.

Такие методы упрочнения металлов, как контролируемый наклеп или нагартовка, могут быть реализованы при помощи различного оборудования, от качества и функциональности которого зависит результат выполняемых операций. Оборудование для нагартовки изделий из стали или других сплавов, которое сегодня представлено большим разнообразием моделей, может быть общего назначения или специального – для того, чтобы выполнять обработку деталей определенного типа (болтов, пружин и др.).

В промышленных масштабах нагартовка выполняется на автоматизированных устройствах, все режимы работы которых устанавливаются и контролируются за счет использования электронных систем. В частности, на таких станках автоматически регулируется как количество, так и скорость подачи дроби, используемой для выполнения обработки.

Выполнение наклепа, при котором процесс его формирования контролируется, используется в тех случаях, когда изделие из стали нет возможности упрочнить при помощи термической обработки. Помимо нагартовки и наклепа повысить прочность поверхностного слоя металлического изделия могут и другие методы холодной пластической деформации. Сюда, в частности, относятся волочение, накатка, холодная прокатка, дробеструйная обработка и др.

Кроме стали, содержание углерода в которой не должно превышать 0,25%, такой способ упрочнения необходим изделиям из меди, а также некоторым алюминиевым сплавам. Нагартовке также часто подвергается лента нержавеющая. Ленту нагартованную применяют в тех случаях, когда обычная лента нержавеющая не способна справляться с воспринимаемыми нагрузками.

Наклеп, который сформировался на поверхности металлического изделия в процессе выполнения его обработки различными методами, можно снять, для чего используется специальная термическая обработка. При выполнении такой процедуры металлическое изделие нагревают, что приводит к тому, что атомы его внутренней структуры начинают двигаться активнее. В результате она переходит в более устойчивое состояние.

Выполняя такой процесс, как рекристаллизационный отжиг, следует учитывать степень нагрева металлической детали. Если степень нагрева незначительна, то в структуре металла снимаются микронапряжения второго рода, а его кристаллическая решетка частично искажается. Если интенсивность нагрева увеличить, то начнут формироваться новые зерна, оси которых сориентированы в одном пространственном положении. В результате интенсивного нагрева полностью исчезают деформированные зерна и формируются те, оси которых ориентированы в одном направлении.

Существует также такая технологическая операция, как правка наклепом, при помощи которой металлический вал или лист приводятся в исходное состояние. Чтобы выполнить такую операцию, нацеленную на устранение несоответствий геометрических параметров их требуемым значениям, нет необходимости использовать специальный станок – ее выполняют при помощи обычного молотка и ровной плиты, на которую укладывается обрабатываемое изделие. Нанося таким молотком удары по изделию, форму которого требуется исправить, добиваются формирования на его поверхности наклепанного слоя, что в итоге приведет к достижению требуемого результата.

Для повышения твердости поверхностных слоев, предела выносливости и сопротивляемости истиранию многие детали машин подвергают поверхностному уп­рочнению.

Существует три основных метода поверхностного упрочнения: поверхностная закалка, химико-термическая обработка и упрочнение пластическим дефор­мированием.

7.1. Поверхностная закалка стали

Основное назначение поверхностной закалки: повы­шение твердости, износостойкости и предела выносли­вости деталей (зубьев шестерен, шеек валов, направляю­щих станин металлорежущих станков и др.). Сердцевина детали остается вязкой и хорошо воспринимает ударные и другие нагрузки.

В промышленности при­меняют следующие способы поверхностной закалки: закалку с индукционным нагревом токами высокой частоты (т. в. ч.); закалку с электроконтактным нагревом; газоплазменную закалку; закалку в электролите.


Рис. 7.1. Способы нагрева при поверхностной за­калке стали:

а - токами высокой частоты; б - ацетилено - кислородным пламенем

(1 – деталь; 2 - индуктор; 1 - нагрев; 11 - охлаждение; 111 - закаленный слой; IV - незакаленная сердце­вина)

Общим для всех способов поверхностной закалки является нагрев поверхностного слоя детали до температуры выше критической точки Ac s с последующим быстрым охлаждением для получения структуры мартенсита. В настоящее время наибольшее распространение полу­чила поверхностная закалка с индукционным нагревом т. в. ч. Реже, главным образом для крупных деталей, применяют закалку с нагревом газовым пламенем.

Сущность процесса закалки при нагреве токами высокой частоты заключается в том, что на специальной установке производят нагрев детали 1(рис. 7.1, а) с помощью выполненного по форме закаливаемой детали медного индуктора 2, через который пропускают пере­менный ток высокой частоты. В течение нескольких секунд поверхность детали прогревается на необходимую глубину, затем ток выключают, деталь быстро охлаждают. Индуктор в процессе работы не нагревается благодаря интенсивному охлаждению циркулирующей внутри него водой.

Закалка с газопламенным нагревом заключается в том, что поверхность стальной детали нагревают пла­менем ацетиленокислородной горелки до температуры закалки и быстро охлаждают струей холодной воды (рис. 7.1 , б). Газовая горелка движется над поверхно­стью детали с определенной скоростью, а за нею с той же скоростью перемещается закалочная трубка, через которую подается вода. Этот способ закалки основан на том, что ацетиленокислородное пламя имеет темпе­ратуру 2500-3200° С и нагревает поверхность изделия до температуры закалки за очень короткий промежуток времени, в течение которого нижележащие слои стали не успевают прогреться до критической точки и потому не закаливаются. Толщина закаленного слоя колеб­нется в пределах 2 - 4 мм, а его твердость составляет HRC 50-56. Газопламенная закалка вызывает меньшие деформации, чем объемная закалка, и не загрязняет поверхность. Для крупных деталей этот способ закалки часто более рентабелен, чем закалка с индукционным нагревом (т. в. ч.).

Поверхностная закалка с применением электрокон­тактного нагрева выполняется следующим образом. Деталь нагревают до температуры закалки теплом, которое выделяется в месте контакта ее с электродом (медным роликом), специального приспособления. Ох­лаждение закаливаемой поверхности детали производят при помощи душа, который перемещается вслед за подвижным электродом.

Поверхностную закалку при нагреве в электролите выполняют в 10%- ном растворе поваренной соли, поташа или кальцинированной соды. Детали, подлежащие закалке, погружают в ванну, и они являются катодом, а корпус ванны - анодом. При пропускании постоянного электрического тока через электролит вокруг катода (детали) образуется газовая оболочка, которая нарушает электрический контакт катода с электролитом, и деталь интенсивно нагревается до температуры закалки. После этого ток выключают; деталь закаливается в электролите, который омывает ее со всех сторон.

Кроме описанных применяют ряд других способов поверхностной закалки, в частности нагрев деталей под закалку в расплавленных металлах или солях. В них закаливают мелкие детали простой геометрической формы, изготовляемые в небольших количествах.

Отпуск после выполнения поверхностной закалки производят с целью снятия напряжений, возникших в зоне закалки. Это уменьшает хрупкость и повышает прочность деталей. Твердость повышается на 2-3 ед. по сравнению с обычной закалкой; улучшается износо­стойкость; предел выносливости возрастает в 1,5-2 раза.

7.2. Химико–термическая обработка

Химико-термической обработкой называют процесс, заключающийся в сочетании термического и химиче­ского воздействия для изменения состава, структуры и свойств поверхностного слоя стали.

Химико-термическая обработка основана на диф­фузии (проникновении) в атомно-кристаллическую ре­шетку железа атомов различных химических элементов при нагреве стальных деталей в среде, богатой этими элементами.

Наибольшее распространение получили следующие виды химико-термической обработки.

Цементация - процесс, состоящий в диффузион­ном насыщении поверхностного слоя стали углеродом до оптимальной концентрации 0,8-1,1% и получении после закалки высокой твердости поверхности (HV700 - 800) при сохранении вязкой сердцевины. Цементации подвергаются детали, изготовленные из низкоуглероди­стых сталей или из легированных низко­углеродистых сталей. При цементации используют естественные и искусственные газы или жидкий карбю­ризатор (бензол, пиробензол, керосин и др.), который подается непосредственно в рабочее пространство печи. При нагреве происходит разложение метана. Атомарный углерод поглощается по­верхностью стали и проникает в глубину детали. Газо­вая цементация деталей производится при температуре 930-950° С.

Азотирование заключается в диффузионном насыще­нии поверхностного слоя азотом. Азотирование повышает твердость поверхностного слоя, его износостой­кость, предел выносливости и сопротивление коррозии в среде атмосферного воздуха, воды, пара и т. д. Азоти­рование проводят обычно при 500-600° С (для повыше­ния износостойкости и прочности) или при 600-800° С (для повышения коррозионной стойкости) в среде ам­миака, который при указанных температурах диссо­циирует с образованием атомарного азота. Атомарный азот диффундирует в же­лезо.

Нитроцементация и цианирование - поверхност­ное насыщение деталей одновременно углеродом и азо­том. Процесс выполняют либо в газовой среде, либо в расплавленной ванне из цианистых солей. В первом случае процесс называют нитроцементацией, во вто­ром - цианированием. Газовая нитроцементация поз­воляет повысить износостойкость обрабатываемых дета­лей и сделать процесс более рентабельным. При низких температурах поверхностный слой стали насыщается преимущественно азотом, а при высоких - углеродом.

Газовое цианирование (нитроцементацию) разделяют навысокотемпературное (при 800-950° С) и низкотемпературное (при 550-600° С). Высокотемпературное цианирование применяют для получения высокой твердости и износостойкости поверхностей деталей из конструкционных сталей с получением слоя глубиной 0,2-1,0 мм. После нитроцементации детали закаливают и затем подвергают низкому отпуску. Низкотемпературное цианирование выполняют в течение 5-10 ч в среде эндогаза или газа, полученного из синтина (смесь углеводородов) с добавлением 12-20% аммиака, или путем использования триэтаноламина. В результате такой обработки на поверхности стали образуется тонкий карбонитридный слой (толщиной 0,15- 0,20 мм), обладающий высокой износостойкостью. Перед низкотемпературным цианированием производится полная меха­ническая и термическая обработка деталей.

К числу новых методов химико-термической обра­ботки относят насыщение поверхности стали бором. Борирование повышает твердость, сопротив­ление абразивному износу, коррозионную стойкость, теплостойкость и жаростойкость, однако борированные слои обладают высокой хрупкостью. При сульфидировании производят насыще­ние поверхности стали серой, азотом и углеродом на глубину 0,2-0,3 мм для повышения износостойкости, прирабатываемости деталей при трении и устойчивости их против задиров.

Диффузионная металлизация - процесс насыщения поверхности стали алюминием (алитирование), хромом (хромирование), кремнием (силицирование). Металли­зация кремнием повышает кислотоупорность, хромом или алюминием - жаростойкость, хромом, азотом иуглеродом - износостойкость и т. д. Металлы образуют с железом твердые растворы замещения, поэтому диф­фузия их осуществляется значительно труднее, чем диффузия углерода или азота. В связи с этим процессы диффузионной металлизации выполняют при высоких температурах: алитирование - при 900-1000°С, си­лицирование - при 950-1050°С.

Применение диффузионной металлизации во многих случаях не только вполне оправдано, но и является экономически выгодным. Так, детали жаростойкие при температуре до 1000-1100° С, изготовляют из простых углеродистых сталей, а с поверхности насыщают алюми­нием, хромом или кремнием, что значительно выгоднее, чем применение специальных легированных жаростой­ких сталей.

7.3. Поверхностное упрочнение стальных изделий

пластическим деформированием

Поверхностное упрочнение методом пластического деформирования - прогрессивный технологический процесс, приводящий к изменению свойств поверхности металлического изделия. При этом методе пластически деформируют только поверхность. Деформирование осу­ществляют либо обкаткой роликами, либо обдувкой дробью.

Чаще применяют обдувку дробью, при которой поверхность подвергается ударам быстролетящих круг­лых дробинок размером 0,2-1,5 мм, изготовленных из стали или белого чугуна. Обработку выполняют в спе­циальных дробеметах. Удары дробинок приводят к пла­стической деформации и наклепу в микрообъемах по­верхностного слоя. В результате дробеструйной обра­ботки образуется наклепанный слой глубиной 0,2-0,4 мм. Кроме того, за счет увеличения объема накле­панного слоя на поверхности изделия появляются остаточные напряжения сжатия, что сильно повышает усталостную прочность. Например, срок службы витых пружин автомобиля, работающих в условиях, вызываю­щих усталость, повышается в 50-60 раз, коленчатых валов - в 25-30 раз.

Дробеструйная обработка, так же как и обкатка роликами, является конечной технологической опера­цией, перед которой изделия проходят механическую и термическую обработку.

8. СБОРКА ИЗДЕЛИЙ

Сборка является заключительным этапом при изготовлении машин. Объем работ при сборке в автомобилестроении составляет до 20% от об­щей трудоемкости изготовления автомобиля.

Технологический процесс сборки - это совокупность операций по со­единению деталей в определенной последовательности с целью получить изделие, отвечающее заданным эксплуатационным требованиям.

Изделие состоит из основных частей, роль которых могут выполнять детали, сборочные единицы, комплексы, комплекты.

Сборочная единица - часть изделия, составные части которой подле­жат соединению между собой на сборочных операциях на предприятии-изготовителе. Её характерной особенностью является возможность сборки обособленно от других элементов изделия. Сборочная единица изделия в зависимости от конструкции может собираться либо из отдельных деталей, либо из сборочных единиц высших порядков и деталей. Различают сбороч­ные единицы первого, второго и более высоких порядков. Сборочная еди­ница первого порядка входит непосредственно в изделие. Она состоит либо из отдельных деталей, либо из одной или нескольких сборочных единиц второго порядка и деталей и т.д. Сборочную единицу наивысшего порядка расчленяют только на детали. Сборочные единицы называют на практике узлами или группами.

Сборочная операция - это технологическая операция установки и об­разования соединений сборочных единиц изделия. Сборку начинают с ус­тановки и закрепления базовой детали. Поэтому в каждой сборочной еди­нице должна быть найдена базовая деталь - это деталь, с которой начинают сборку изделия, присоединяя к ней детали и другие сборочные единицы.

По последовательности выполнения различают:

Промежуточную сборку - это сборка мелких элементов на механических участках или сборка 2-х деталей перед окончательной обработкой;

Узловую сборку - это сборка сборочных единиц изделия;

Общую сборку - это сборка изделия в целом.

По наличию перемещений собираемых изделий различают:

Стационарную сборку - это сборка изделия или основной его части на од­ном рабочем месте;

Подвижную сборку - собираемое изделие перемещается по конвейеру.

По организации производства различают:

Поточную сборку, - которая предусматривает разделение технологического процесса на отдельные технологические операции, продолжительность ко­торых не превышает такта выпуска изделия;

Групповую сборку, - которая предусматривает возможность сборки раз­личных однотипных изделий на одном рабочем месте.

По степени подвижности различают подвижные и неподвижные со­единения.

Подвижные соединения обладают возможностью относительного пе­ремещения в рабочем состоянии в соответствии с кинематической схемой механизма. При этом используются посадки с зазором. Для сборки не тре­буется значительных усилий.

Неподвижные соединения не позволяют перемещаться друг относи­тельно друга соединяемым деталям. В неподвижных соединениях используются переходные посадки или посадки с натягом.

По характеру разбираемости соединения подразделяют на разъемные и неразъемные.

Разъемные соединения могут быть полностью разобраны без повре­ждения соединяемых деталей.

Неразъемные соединения собираются при помощи прессовых поса­док, сварки, пайки, склеивания и т.д. Без повреждения собираемых деталей их разобрать невозможно.

Методы сборки - определяются конструктором изделия путем про­становки допусков сопрягаемых деталей.

При сборке всегда происходит материализация заложенных конст­руктором размерных цепей.

Метод полной взаимозаменяемости - позволяет проводить сборку из­делия без какого-либо подбора или дополнительной обработки деталей. Метод наименее трудоемок, но необходимо увеличить затраты на механи­ческую обработку.

Многие детали работают в условиях повышенного износа поверхности. Поэтому есть необходимость эту поверхность как-то защитить. Это достигается методами поверхностного упрочнения.

Упрочнить поверхность - значит повысить свойства поверхности: твердость, износостойкость, коррозионную стойкость. Если надо изменить свойства, то это значит, что должна измениться структура поверхностного слоя. Для изменения структуры можно использовать деформацию, термическую обработку с нагревом различными способами, изменение химического состава поверхности, нанесение защитных слоев.
В основном методы упрочнения поверхностей можно разбить на две основные группы:
1) упрочнение изделия без изменения химического состава поверхности, но с изменением структуры. Упрочнение достигается поверхностной закалкой, поверхностным пластическим деформированием и другими методами.
2) упрочнение изделия с изменением химического состава поверхностного слоя и его структуры. Упрочнение осуществляется различными методами химико-термической обработки и нанесением защитных слоев.

Методы изменения структуры

Из методов упрочнения без изменения химического состава поверхности, но с изменением ее структуры, наиболее распространены способы поверхностной закалки и различные виды поверхностного пластического деформирования (ППД).
В сущности, деформация поверхности - это наиболее простой способ, при котором прочностные характеристики поверхности возрастают. Здесь использован следующий принцип. Если вспомнить кривую деформационного упрочнения, то окажется, что чем больше растягиваем металл, тем больше металл сопротивляется, тем больше сила растяжения Р max (до определенного предела, конечно). Упрочняется металл и при кручении, и при сжатии. В технологиях ППД поверхностный слой металла деформируют (наклепывают) различными способами.
Основное назначение ППД - повышение усталостной прочности путем наклепа поверхности на глубину 0,2—0,4 мм. Разновидностями ППД являются дробеструйная обработка, обработка роликами, иглофрезерование, накатка рельефа и др.
Дробеструйная обработка - обработка дробью поверхности готовых деталей. Применяется для упрочнения деталей, удаления окалины. Дробеструйной обработке подвергают изделия типа пружин, рессор, звенья цепей, гусениц, гильзы, поршни, зубчатые колеса.
При обработке роликами деформация осуществляется давлением ролика из твердого металла на поверхность обрабатываемого изделия. При усилиях на ролик, превышающих предел текучести обрабатываемого материала, происходит наклеп на нужную глубину.
Обработка роликами улучшает микрогеометрию изделия. Создание остаточных напряжений сжатия повышает предел усталости и долговечность изделия. Обкатка роликами применяется при обработке валов, калибровке труб, прутков. На рис. 1 показан упрочненный поверхностный слой образца стальной оси железнодорожного вагона из стали 45. Микроструктура слоя представляет собой деформированные зерна феррита и перлита. Накатка роликом измельчила структуру, в поверхностном слое отдельные зерна неразличимы (рис.1,а). Там, где деформация была меньше, можно различить структуру, которая имеет направленность, характерную для деформации (рис.1,б). Глубину упрочнения контролируют по изменению микротвердости (рис.2).

а б

Рисунок 1. Микроструктура поверхностного слоя стали 45 после накатки роликом

Рисунок 2. Изменение микротвердости по глубине поперечного сечения валов различного диаметра.

Иглофрезерование при помощи фрез, на поверхности которых находится от 200 тысяч до 40 миллионов плотно расположенных игл из высокопрочной стальной проволоки диаметром 0,2—0,8 мм, также позволяет проводить упрочнение поверхности деталей. Иглофрезерование применяют для обработки плоских и цилиндрических поверхностей, а также для очистки деталей от окалины. При иглофрезеровании тоже образуется упрочненный поверхностный слой (рис. 3). В данном случае упрочненный слой состоит из деформированных зерен феррита и перлита (рис.3, а). На поверхности, подвергавшейся обработке, видны следы фрезы (рис.3,б).

Рисунок 3. Микроструктура упрочненного слоя стали 20ХНР (а), исходное состояние-нормализация; поверхность после иглофрезерования (б).

Сущность поверхностной закалки состоит в том, что поверхностные слои стальной детали быстро нагревают выше температуры закалки, а затем охлаждают со скоростью выше критической. Основное назначение поверхностной закалки: повышение твердости, износостойкости и предела выносливости поверхности при сохранении вязкой сердцевины. Нагрев, в принципе, может быть осуществлен разными способами. В промышленности самым распространенным способом поверхностного упрочнения является индукционная закалка с нагревом токами высокой частоты. Как правило, упрочненный слой виден уже при макроструктурном анализе (рис. 4). Слева - нетравленный участок образца. Он сильнее отражает свет при съемке, поэтому выглядит темным. Справа - участок после травления. Закаленный слой хорошо виден.

Рисунок 4. Фрагмент автомобильной детали; макроструктура

И при макроструктурном, и при микроструктурном (рис.5,а) анализе видно, что упрочненная зона состоит из 2 слоев: светлый у самой поверхности и далее более темный. Верхний светлый слой имеет структуру мартенсита закалки (рис.5,б). Мартенсит образовался при быстром охлаждении поверхности. Более темный слой - мартенсит отпуска (рис.5,в). Это тот мартенсит, который тоже образовался при ускоренном охлаждении, но дольше находился при повышенной температуре, чего оказалось достаточно для того, чтобы произошел отпуск. В сердцевине детали на разной глубине могут быть сорбит или троостит (рис.5,г).

Рисунок 5. Микроструктура слоя (на рис.4), полученного закалкой ТВЧ: а - слои мартенсита закалки и отпуска, б - мартенсит закалки, в- мартенсит отпуска, г - троостит и мартенсит в сердцевине.

Методы изменения структуры и состава

К методам упрочнения с изменением химического состава и структуры поверхности относится химико-термическая обработка (ХТО). Она заключается в насыщении поверхностного слоя стали различными элементами при высокой температуре. В зависимости от насыщающего элемента существуют следующие разновидности химико-термической обработки: цементация, азотирование, нитроцементация (цианирование), борирование, диффузионная металлизация (алитирование, хромирование, силицирование и т.д.). Общим для всех видов поверхностного упрочнения является повышение твердости поверхностного слоя. Выбор метода поверхностного упрочнения детали зависит от условий ее эксплуатации, формы, размеров, марки выбранной стали и других факторов.
Наиболее широко используется цементация - насыщение поверхности стали углеродом. Цементация придает поверхности стали высокую твердость и износостойкость при сохранении вязкой и пластичной сердцевины. Окончательные свойства цементированные изделия приобретают после закалки и низкого отпуска. Цементации обычно подвергаются детали, изготовленные из сталей с содержанием углерода до 0,25%, работающие в условиях контактного износа и приложения знакопеременных нагрузок: среднеразмерные зубчатые колеса, втулки, поршневые пальцы, кулачки, валы коробок передач автомобилей, отдельные детали рулевого управления и т.д.
Цементированный слой имеет переменную концентрацию углерода по толщине, уменьшающуюся от поверхности к сердцевине стальной детали. Поэтому структура, которая формируется при цементации в поверхностном слое, будет иметь разное соотношение перлита, феррита и цементита. Различают четыре основные зоны стального изделия после цементации (рис.6):

Рис. 6. Микроструктура углеродистой доэвтектоидной стали 10 после цементации.

1 - заэвтектоидная зона, состоящая из перлита и цементитной сетки (рис.7а);
2 - эвтектоидная зона, представляющая собой перлит (рис.7б);
3 -доэвтектоидная зона, в которой по мере приближения к сердцевине уменьшается количество углерода, перлита, а количество феррита возрастает (рис.7в);
4 - исходная, без изменения после цементации, структура стального изделия.
За глубину цементированного слоя "h" принимают сумму заэвтектоидной, эвтектоидной и половину доэвтектоидной зоны, где количество феррита и перлита составляет по 50%.

Рисунок 7. Структура зон цементованной детали: а - заэвтектоидная зона (цементит + перлит), б - зона эвтектоида (перлит), в - доэвтектоидная зона (перлит + феррит).

Рисунок 8. Изменение твердости в поверхностном слое после цементации и термической обработки

Азотирование представляет собой процесс насыщения поверхностного слоя стали азотом и чаще всего проводится при температурах 500—600 о С. Азотирование, так же как и цементация, повышает твердость и износостойкость поверхности стали. На рис.9 показана серия отпечатков при измерении микротвердости на поперечном шлифе азотированного образца. Вверху - упрочненный слой (темная полоса). Диаметр отпечатков снижается по мере приближения к поверхности. Там твердость выше.

Рисунок 9. «Дорожка» отпечатков микротвердости; стальная деталь после азотирования

Азотированный слой как правило, имеет белый цвет. Сам слой при металлографическом травлении не изменяется, а под ним сталь имеет структуру, соответствующую термической обработке (рис.10). На рис.11 показана автомобильная деталь и изменение микротвердости по разным "зубьям".

Рисунок 10. Азотированный слой на стали 40ХГНМ

а б

Рисунок 11. Автомобильная деталь (а) и изменение микротвердости (б) ее поверхностного слоя после азотирования

В настоящее время широко применяется плазменное и ионно-плазменное азотирование. Структура поверхностного слоя после такой обработки представляет собой мелкодисперсный мартенсит (1), под которым находится переходная зона (2); глубже располагается не изменившаяся структура (3) (рис. 12).

Рисунок 12. Структура поверхностного слоя после обработки плазмой азота; сталь У8А

Борирование — процесс химико-термической обработки, диффузионного насыщения поверхности металлов и сплавов бором при нагреве. Борирование приводит к существенному повышению твердости поверхности. Борирование проводят в порошковых смесях, электролизом. Есть также жидкостное безэлектролизное борирование, ионное борирование и борирование из обмазок (паст). Борирование чаще всего проводят при электролизе расплавленной буры (Na 2 B 4 O 7). Изделие служит катодом. Температура насыщения 930—950 °C, выдержка 2 — 6 часов.
На поверхности образца после борирования формируется плотный белый слой боридов (рис.13). Белый слой состоит из переплетающихся столбчатых кристаллов состава FeB и Fe 2 B. На строение боридного слоя влияет состав стали. В стали 25ХГТ (рис. 13, а) и в стали 45 (рис. 13, б) между кристаллами боридов есть зона твердого раствора. В стали 40Х (рис. 13, в) слой составляют только протяженные иглы боридов. Между борированным слоем и сердцевиной формируется зигзагообразная граница раздела.

а б в

Рисунок 13. Структура борированных слоев в сталях 25ХГТ (а), 45 (б), 40Х (в)

    Термомеханическая обработка стали

    Поверхностное упрочнение стальных деталей

    Закалка токами высокой частоты.

    Газопламенная закалка.

    Старение

    Обработка стали холодом

    Упрочнение методом пластической деформации

Термомеханическая обработка стали

Одним из технологических процессов упрочняющей обработки является термомеханическая обработка (ТМО).

Термомеханическая обработка относится к комбинированным способам изменения строения и свойств материалов.

При термомеханической обработке совмещаются пластическая деформация и термическая обработка (закалка предварительно деформированной стали в аустенитном состоянии).

Преимуществом термомеханической обработки является то, что при существенном увеличении прочности характеристики пластичности снижаются незначительно, а ударная вязкость выше в 1,5…2 раза по сравнению с ударной вязкостью для той же стали после закалки с низким отпуском.

В зависимости от температуры, при которой проводят деформацию, различают высокотемпературную термомеханическую обработку (ВТМО) и низкотемпературную термомеханическую обработку (НТМО).

Сущность высокотемпературной термомеханической обработки заключается в нагреве стали до температуры аустенитного состояния (выше А 3 ). При этой температуре осуществляют деформацию стали, что ведет к наклепу аустенита. Сталь с таким состоянием аустенита подвергают закалке (рис. 16.1 а).

Высокотемпературная термомеханическая обработка практически устраняет развитие отпускной хрупкости в опасном интервале температур, ослабляет необратимую отпускную хрупкость и резко повышает ударную вязкость при комнатной температуре. Понижается температурный порог хладоломкости. Высокотемпературная термомеханическая обработка повышает сопротивление хрупкому разрушению, уменьшает чувствительность к трещинообразованию при термической обработке.

Рис. 16.1. Схема режимов термомеханической обработки стали: а – высокотемпературная термомеханическая обработка (ВТМО); б – низкотемпературная термомеханическая обработка (НТМО).

Высокотемпературную термомеханическую обработку эффективно использовать для углеродистых, легированных, конструкционных, пружинных и инструментальных сталей.

Последующий отпуск при температуре 100…200 o С проводится для сохранения высоких значений прочности.

Низкотемпературная термомеханическая обработка (аусформинг).

Сталь нагревают до аустенитного состояния. Затем выдерживают при высокой температуре, производят охлаждение до температуры, выше температуры начала мартенситного превращения (400…600 o С), но ниже температуры рекристаллизации, и при этой температуре осуществляют обработку давлением и закалку (рис. 16.1 б).

Низкотемпературная термомеханическая обработка, хотя и дает более высокое упрочнение, но не снижает склонности стали к отпускной хрупкости. Кроме того, она требует высоких степеней деформации (75…95 %), поэтому требуется мощное оборудование.

Низкотемпературную термомеханическую обработку применяют к среднеуглеродистым легированным сталям, закаливаемым на мартенсит, которые имеют вторичную стабильность аустенита.

Повышение прочности при термомеханической обработке объясняют тем, что в результате деформации аустенита происходит дробление его зерен (блоков). Размеры блоков уменьшаются в два – четыре раза по сравнению с обычной закалкой. Также увеличивается плотность дислокаций. При последующей закалке такого аустенита образуются более мелкие пластинки мартенсита, снижаются напряжения.

Механические свойства после разных видов ТМО для машиностроительных сталей в среднем имеют следующие характеристики (см. табл. 16.1):

Таблица 16.1. Механические свойства сталей после ТМО

(сталь 40 после обычной закалки)

Термомеханическую обработку применяют и для других сплавов.

Основными методами упрочнения поверхности деталей являются химико-термическая обработка, поверхностная закалка и деформирование поверхности в холодном состоянии (поверхностный наклеп).

Химико-термическая обработка состоит в насыщении поверхности детали каким-либо элементом с последующей термической обработкой. Наиболее распространенные виды химико-термической обработки цементация (насыщение поверхности углеродом) и азотирование (насыщение поверхности азотом).

Цементация проводится с целью получения высокой твердости и износоустойчивости поверхности при сохранении более мягкой и вязкой сердцевины детали. Поэтому цементации всегда подвергают малоуглеродистые стали (0,2%С) или легированные с низким углеродом. Наиболее распространенные детали подвергаемые цементации - зубчатые колеса.

Вещество, поставляющее углерод при цементации, называют карбюризатором. Различают цементацию в твердом карбюризаторе (коксик или древесный уголь с добавлением до 30% соды – Na 2 CO 3) и в газовом (СО).

Детали выдерживают в карбюризаторе от 6 до 12 часов (в зависимости от требуемой толщины не углероженного слоя 2-4мм) при температуре 900-950 0 (в аустенитной области). При этом содержание углерода в поверхностных слоях повышается до 1-1,2%.

Толщину неуглероженного слоя контролируют по специальному образцу-свидетелю, который проходит цементацию вместе с деталями.

После цементации детали подвергают термической обработке по одному из вариантов представленных на рис.18. Наиболее часто применяю закалку с

низким отпуском. Вариант с двумя закалками делают для ответственных деталей (первая закалка от температуры 900 0 для измельчения зерна и устранения сетки цементита в поверхностном слое, вторая от 760-790 0 для получения оптимальной твердости поверхности).

Азотирование проводится в атмосфере аммиака, который разлагаясь при температуре 500-550 0 поставляет активный атомарный азот диффундирующий в поверхность детали. В отличии от цементации высокая твердость азотированной поверхности получается не за счет мартенсита, а за счет очень твердых нитридов. Поэтому для азотирования берут среднеуглеродистые стали содержащие сильные нитридообразующие элементы (Al, Cr, Mo). Классическая сталь для азотируемых деталей 38ХМЮА. Продолжительность азотирования составляет до 48 часов, толщина слоя 0,2-0,5 мм.

Азотирование является окончательной обработкой готовых деталей, никакой термической обработки после азотирования не проводят.

В результате азотирования достигается высокая твердость и износоустойчивость поверхности, повышается сопротивление возникновению трещин при знакопеременных нагрузках (усталостная прочность) и коррозионная стойкость.


Поверхностная закалка состоит в быстром нагреве поверхности детали до аустенитного состояния с последующим охлаждением в воде. В результате на поверхности образуется твердая структура мартенсита, а внутри сохраняется феррито-перлитная структура с достаточно высокой вязкостью. После поверхностной закалки детают низкий отпуск, либо оставляют закаленное состояние без отпуска.

Поверхностной закалке подвергают среднеуглеродистые стали (0,4-0,45%С), либо легированные для увеличения прочности сердцевины деталей. Такой закалке подвергают зубья шестерен, звездочек, шейки валов, головку рельсов и др.

Быстрый нагрев поверхности осуществляется токами высокими частотами (до 1 млн.гц). Сущность такого нагрева состоит в том, что через медный индуктор (спиральная или иной формы трубка охлаждаемая внутри водой) пропускают ток высокой частоты. Вокруг индуктора возникает переменное магнитное поле. Закаливаемую деталь помещают в поле индуктора и за счет поверхностного эффекта поверхность детали быстро разогревается (обычно за 10-15 сек.). Чем больше частота тока, тем больше поверхностный эффект, меньше время нагрева и меньше глубина закаленного слоя. Обычно она составляет 1-3 мм. Когда поверхность нагрелась до требуемой температуры (850-900 0), деталь охлаждают погружая в бак с водой или пропуская через специальное душирующее устройство - спреер.

На рис.19 представлено сечение зуба шестерни после цементации и после закалки ТВЧ. Видно, что свойства шестерни подвергнутой цементации предпочтительней, однако, стоимость закалки ТВЧ значительно меньше.

Закалка ТВЧ имеет ряд положительных качеств:

1. Высокая производительность;

2. Высокое качество закалки (не растет зерно, почти нет окалины);

3. Очень малы деформации (уменьшаются пропуски на механическую обработку-шлифовку);

4. Экономно расходуется электроэнергия, которая идет только на нагрев части детали;

5. Процесс хорошо поддается механизации и автоматизации;

6. Улучшаются условия труда;

7. Во многих случаях заменяет более дорогую операцию-цементацию

В ремонтном производстве иногда применяют поверхностную закалку с нагревом пламенем газовой горелки. Однако, такой процесс трудно контролировать и результат при его применении зачастую непредсказуем.



Справочники