Почему происходит взрыв при прохождении звукового барьера. Кто первым преодолел звуковой барьер

Иногда, когда в небе пролетает реактивный самолет, можно услышать громкий хлопок, по звуку напоминающий взрыв. Этот «врыв» является результатом преодоления самолетом звукового барьера.

Что такое звуковой барьер и почему мы слышим взрыв? И кто первым преодолел звуковой барьер ? Эти вопросы мы рассмотрим ниже.

Что такое звуковой барьер и как он образуется?

Аэродинамический звуковой барьер – ряд явлений, которые сопровождают движение любого летательного аппарата (самолета, ракеты и т.п.), скорость которого равна или превышает скорость звука. Другими словами, аэродинамический «звуковой барьер» - это резкий скачок сопротивления воздуха, который возникает при достижении самолетом скорости звука.

Звуковые волны перемещаются в пространстве с определенной скоростью, которая изменяется в зависимости от высоты, температуры и давления. Например, на уровне моря скорость звука составляет примерно 1220 км/час, на высоте 15 тыс. м – до 1000 км/час и т.д. Когда скорость самолета приближается к скорости звука, на него действуют определенные нагрузки. На обычных скоростях (дозвуковых) нос самолета «гонит» перед собой волну сжатого воздуха, скорость которой соответствует скорости звука. Скорость движения волны больше, чем обычная скорость самолета. В результате этого, воздух свободно обтекает всю поверхность самолета.

Но, если скорость самолета соответствует скорости звука, волна сжатия образуется не на носу, а перед крылом. В результате этого образуется ударная волна, увеличивающая нагрузки на крылья.

Чтобы летательный аппарат смог преодолеть звуковой барьер, кроме определенной скорости он должен иметь особую конструкцию. Именно поэтому авиаконструкторы разработали и применили в самолетостроении специальный аэродинамический профиль крыла и другие хитрости. В момент преодоления звукового барьера пилот современного сверхзвукового летательного аппарата ощущает вибрации, «скачки» и «аэродинамический удар», который на земле мы воспринимаем, как хлопок или взрыв.

Кто первым преодолел звуковой барьер?

Вопрос «первопроходцев» звукового барьера такой же, как и вопрос первых покорителей космоса. На вопрос «Кто первым преодолел сверхзвуковой барьер ?» можно дать разные ответы. Это и первый человек, преодолевший звуковой барьер, и первая женщина, и, как ни странно, первое устройство…

Первым, кто преодолел звуковой барьер, был летчик-испытатель Чарльз Эдвурд Йегер (Чак Игер). 14 октября 1947 года его экспериментальный самолет Bell X-1, оснащенный ракетным двигателем, выйдя в пологое пикирование с высоты 21379 м над Викторвиллем (Калифорния, США), достиг скорости звука. Скорость самолета в этот момент составила 1207 км/ч.

На протяжении своей карьеры военный летчик сделал большой вклад в развитие не только американской военной авиации, но и космонавтики. Чарльз Элвуд Йегер закончил свою карьеру в звании генерала ВВС США, побывав во многих уголках планеты. Опыт военного летчика пригодился даже в Голливуде при постановке эффектных воздушных трюков в художественном фильме «Летчик».

Историю Чака Йегера о преодолении звукового барьера рассказывает фильм «Парни что надо», который в 1984 году удостоился четырех статуэток Оскар.

Другие «покорители» звукового барьера

Кроме Чарльза Йегера, который первым преодолел звуковой барьер, были и другие рекордсмены.

  1. Первый советский летчик-испытатель – Соколовский (26 декабря 1948).
  2. Первая женщина – американка Жаклин Кохран (18 мая 1953 г.). Пролетая над военно-воздушной базой Эдвардс (Калифорния, США), ее самолет F-86 преодолел звуковой барьер на скорости 1223 км/час.
  3. Первый гражданский самолет – американский пассажирский авиалайнер Douglas DC-8 (21 августа 1961 г.). Его полет, проходивший на высоте около 12,5 тыс. м, был экспериментальным и организовывался с целью сбора данных, необходимых для будущего проектирования передних кромок крыльев.
  4. Первый автомобиль, преодолевший звуковой барьер - Thrust SSC (15 октября 1997 г.).
  5. Первый человек, преодолевший звуковой барьер в свободном падении – американец Джо Киттингер (1960 г.), прыгнувший с парашютом с высоты 31,5 км. Однако после него, пролетая 14 октября 2012 г. над американским городом Розуэлл (Нью-Мексико, США), австриец Феликс Баумгартнер поставил мировой рекорд, покинув воздушный шар с парашютом на высоте 39 км. Его скорость при этом составила около 1342,8 км/час, а спуск на землю, большая часть пути которого проходила в свободном падении, занял всего 10 минут.
  6. Мировой рекорд преодоления звукового барьера летательным аппаратом принадлежит гиперзвуковой аэробаллистической ракете Х-15 класса «воздух-земля» (1967 г.), находящейся сейчас на вооружении российской армии. Скорость ракеты на высоте 31,2 км составила 6389 км/час. Хотелось бы отметить, что максимально возможная скорость передвижения человека в истории пилотируемых летательных аппаратов – 39897 км/час, которую в 1969 г. достиг американский космический корабль «Аполлон-10».

Первое изобретение, преодолевшее звуковой барьер

Как ни странно, но первым изобретением, преодолевшим звуковой барьер был… простой хлыст, придуманный древними китайцами 7 тыс. лет назад.

До изобретения в 1927 году моментальной фотографии, никто не мог подумать, что щелчок хлыста – это не просто удар ремешка о рукоятку, а миниатюрный сверхзвуковой щелчок. Во время резкого взмаха формируется петля, скорость которой увеличивается в несколько десятков раз и сопровождается щелчком. Петля преодолевает звуковой барьер на скорости порядка 1200 км/час.

Звуковой барьер

Звуково́й барье́р

явление, возникающее в полёте самолёта или ракеты в момент перехода от дозвуковой к сверхзвуковой скорости полёта в атмосфере. При приближении скорости самолёта к скорости звука (1200 км/ч) в воздухе перед ним возникает тонкая область, в которой происходит резкое увеличение давления и плотности воздушной среды. Это уплотнение воздуха перед летящим самолётом называется ударной волной. На земле прохождение ударной волны воспринимается как хлопок, похожий на звук выстрела. Превысив , самолёт проходит сквозь эту область повышенной плотности воздуха, как бы прокалывает её – преодолевает звуковой барьер. Долгое время преодоление звукового барьера представлялось серьёзной проблемой в развитии авиации. Для её решения потребовалось изменить профиль и форму крыла самолёта (оно стало более тонким и стреловидным), сделать переднюю часть фюзеляжа более заострённой и снабдить самолёты реактивными двигателями. Впервые скорость звука была превышена в 1947 г. Ч. Йигером на самолёте Х-1 (США) с жидкостным ракетным двигателем, запущенном с самолёта В-29. В России звуковой барьер первым преодолел в 1948 г. О. В. Соколовский на экспериментальном самолёте Ла-176 с турбореактивным двигателем.

Энциклопедия «Техника». - М.: Росмэн . 2006 .

Звуковой барьер

резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M(∞), несколько превышающих критическое число M*. Причина состоит в том, что при числах M(∞) > M* наступает , сопровождающийся появлением волнового сопротивления. Коэффициент волнового сопротивления летательных аппаратов очень быстро возрастает с ростом числа M, начиная с M(∞) = M*.
Наличие З. б. затрудняет достижение скорости полёта, равной скорости звука, и последующего перехода к сверхзвуковому полёту. Для этого оказалось необходимым создать самолёты с тонкими стреловидными крыльями, что позволило значительно снизить сопротивление, и реактивными двигателями, у которых с ростом скорости тяга возрастает.
В СССР скорость, равная скорости звука, впервые была достигнута на самолёте Ла-176 в 1948.

Авиация: Энциклопедия. - М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .


Смотреть что такое "звуковой барьер" в других словарях:

    Звуковой барьер в аэродинамике название ряда явлений, сопровождающих движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её. Содержание 1 Ударная волна,… … Википедия

    ЗВУКОВОЙ БАРЬЕР, причина трудностей в авиации при увеличении скорости полета свыше скорости звука (СВЕРХЗВУКОВАЯ СКОРОСТЬ). Приближаясь к скорости звука, самолет испытывает неожиданное увеличение сопротивления и потерю аэродинамической ПОДЪЕМНОЙ… … Научно-технический энциклопедический словарь

    звуковой барьер - garso barjeras statusas T sritis fizika atitikmenys: angl. sonic barrier; sound barrier vok. Schallbarriere, f; Schallmauer, f rus. звуковой барьер, m pranc. barrière sonique, f; frontière sonique, f; mur de son, m … Fizikos terminų žodynas

    звуковой барьер - garso barjeras statusas T sritis Energetika apibrėžtis Staigus aerodinaminio pasipriešinimo padidėjimas, kai orlaivio greitis tampa garso greičiu (viršijama kritinė Macho skaičiaus vertė). Aiškinamas bangų krize dėl staiga padidėjusio… … Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

    Резкое увеличение сопротивления аэродинамического при приближении скорости полёта ЛА к скорости звука (превышении кри тич. значения Маха числа полёта). Объясняется волновым кризисом, сопровождающимся ростом волнового сопротивления. Преодолеть 3.… … Большой энциклопедический политехнический словарь

    Звуковой барьер - резкое увеличение сопротивления воздушной среды движению ЛА при. подходе к скоростям, близким к скорости распространения звука. Преодоление 3. б. стало возможным за счёт совершенствования аэродинамических форм самолётов и применения мощных… … Словарь военных терминов

    звуковой барьер - звуковой барьер — резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M∞, несколько превышающих критическое число M*. Причина состоит в том, что при числах M∞ > Энциклопедия «Авиация»

    звуковой барьер - звуковой барьер — резкое увеличение сопротивления аэродинамического летательного аппарата при Маха числах полёта M∞, несколько превышающих критическое число M*. Причина состоит в том, что при числах M∞ > M* наступает волновой кризис,… … Энциклопедия «Авиация»

    - (франц. barriere застава). 1) ворота в крепостях. 2) в манежах и цирках загородка, бревно, шест, через которые прыгает лошадь. 3) знак, до которого доходят бойцы на поединке. 4) перила, решетка. Словарь иностранных слов, вошедших в состав… … Словарь иностранных слов русского языка

    БАРЬЕР, а, муж. 1. Преграда (род стенки, перекладина), поставленная на пути (при скачках, беге). Взять б. (преодолеть его). 2. Загородка, ограждение. Б. ложи, балкона. 3. перен. Преграждение, препятствие для чего н. Река естественный б. для… … Толковый словарь Ожегова

Что мы представляем себе, когда слышим выражение «звуковой барьер»? Некий предел и которой может серьёзно повлиять на слух и самочувствие. Обычно звуковой барьер соотносят с покорением воздушного пространства и

Преодоление этой преграды способно спровоцировать развитие застарелых болезней, болевых синдромов и аллергических реакций. Правильны ли эти представления или они представляют собой установившиеся стереотипы? Имеют ли они под собой фактическую основу? Что такое звуковой барьер? Как и почему он возникает? Всё это и некоторые дополнительные нюансы, а также исторические факты, связанные с этим понятием, мы попробуем выяснить в данной статье.

Эта таинственная наука - аэродинамика

В науке аэродинамике, призванной разъяснить явления, сопровождающие движение
летательного аппарата, существует понятие «звуковой барьер». Это ряд явлений, возникающих при движении сверхзвуковых самолётов или ракет, которые передвигаются на скоростях, приближенных к скорости звука или больших.

Что такое ударная волна?

В процессе обтекания аппарата сверхзвуковым потоком в аэродинамической трубе возникает ударная волна. Её следы могут быть заметны даже невооружённым глазом. На земле они выражены жёлтой линией. Вне конуса ударной волны, перед жёлтой линией, на земле самолёт даже не слышно. При скорости, превышающей звуковую, тела подвергаются обтеканию звуковым потоком, что влечёт за собой ударную волну. Она может быть не одна, что зависит от формы тела.

Преобразование ударной волны

Фронт ударной волны, который иногда называют скачком уплотнения, имеет довольно малую толщину, позволяющую тем не менее отследить скачкообразные изменения свойств потока, снижение его скорости относительно тела и соответствующее возрастание давления и температуры газа в потоке. При этом кинетическая энергия частично преобразуется во внутреннюю энергию газа. Количество этих изменений напрямую зависит от скорости сверхзвукового потока. По мере того как ударная волна удаляется от аппарата, уменьшаются перепады давления, и ударная волна преобразуется в звуковую. Она может достичь стороннего наблюдателя, который услышит характерный звук, напоминающий взрыв. Существует мнение, что это свидетельствует о достижении аппаратом скорости звука, когда звуковой барьер самолёт оставляет позади.

Что происходит на самом деле?

Так называемый момент преодоления звукового барьера на практике представляет собой прохождение ударной волны с нарастающим гулом двигателей самолёта. Теперь аппарат опережает сопровождающий его звук, поэтому гул двигателя будет слышен после него. Приближение скорости к скорости звука стало возможным ещё в ходе Второй мировой войны, но при этом пилоты отмечали тревожные сигналы в работе самолётов.

После окончания войны немало авиаконструкторов и лётчиков стремились достичь скорости звука и преодолеть звуковой барьер, но многие из этих попыток заканчивались трагически. Пессимистически настроенные учёные утверждали, что этот предел превзойти невозможно. Отнюдь не экспериментальным, но научным путём получилось объяснить природу понятия «звуковой барьер» и найти способы его преодоления.

Безопасные полёты на околозвуковых и сверхзвуковых скоростях возможны при избегании волнового кризиса, возникновение которого зависит от аэродинамических параметров самолёта и высоты производимого полёта. Переходы с одного уровня скорости на другой должны выполняться максимально оперативно с применением форсажа, что поможет избежать долгого полёта в зоне волнового кризиса. Волновой кризис как понятие пришёл из водного транспорта. Возникал он в момент движения судов со скоростью, близкой к скорости волн на поверхности воды. Попадание в волновой кризис влечёт за собой затруднение роста скорости, и если максимально просто преодолеть волновой кризис, то можно выйти на режим глиссирования или скольжения по водной глади.

История в управлении самолётами

Первый человек, который достиг сверхзвуковой скорости полёта на экспериментальном самолёте, - это американский лётчик Чак Йегер. Его достижение отмечено в истории 14 октября 1947 года. На территории СССР звуковой барьер был преодолён 26 декабря 1948 года Соколовским и Фёдоровым, которые управляли опытным истребителем.

Из гражданских преодолел звуковой барьер пассажирский лайнер Douglas DC-8, который 21 августа 1961 года достиг скорости 1.012 М, или 1262 км/ч. Полёт имел целью сбор данных для проектирования крыла. Среди летательных аппаратов мировой рекорд поставила гиперзвуковая аэробаллистическая ракета «воздух-земля», которая находится на вооружении российской армии. На высоте в 31,2 километра ракета развила скорость 6389 км/час.

Через 50 лет после преодоления звукового барьера в воздухе англичанин Энди Грин совершил аналогичное достижение на автомобиле. В свободном падении пробовал побить рекорд американец Джо Киттингер, который покорил высоту в 31,5 километра. В наши дни, 14 октября 2012 года, Феликс Баумгартнер поставил мировой рекорд, без помощи транспорта, в свободном падении с высоты 39 километров, преодолев звуковой барьер. Скорость его при этом достигла 1342,8 километра в час.

Самое необычное преодоление звукового барьера

Странно подумать, но первым в мире изобретением, преодолевшим этот предел, стал обычный хлыст, который придумали древние китайцы почти 7 тысяч лет назад. Практически до изобретения моментальной фотографии в 1927 году никто и не подозревал, что щелчок хлыста - это миниатюрный звуковой удар. Резкий взмах формирует петлю, а скорость резко возрастает, что и подтверждает щелчок. Звуковой барьер преодолевается на скорости порядка 1200 км/час.

Загадка самого шумного города

Не зря жители маленьких городов испытывают шок, увидев столицу в первый раз. Обилие транспорта, сотни ресторанов и развлекательных центров сбивают с толку и выбивают из привычной колеи. Начало весны в столице обычно датируется апрелем, а не мятежным вьюжным мартом. В апреле здесь чистое небо, бегут ручьи и распускаются почки. Люди, уставшие от долгой зимы, широко распахивают окна навстречу солнцу, и в дома врывается уличный шум. На улице оглушительно щебечут птицы, поют артисты, декламируют стихи весёлые студенты, не говоря уже о шуме в пробках и метро. Сотрудники отделов гигиены отмечают, что долго находиться в шумном городе вредно для здоровья. Звуковой фон столицы состоит из транспортных,
авиационных, промышленных и бытовых шумов. Наиболее вредным является как раз автомобильный шум, так как самолёты летают достаточно высоко, а шум от предприятий растворяется в их зданиях. Постоянный же гул автомобилей на особо оживлённых магистралях превышает все допустимые нормы в два раза. Как в столице преодолевается звуковой барьер? Москва опасна обилием звуков, поэтому жители столицы устанавливают стеклопакеты, чтобы приглушить шум.

Как осуществляется штурм звукового барьера?

До 1947 года не было фактических данных о самочувствии человека в кабине самолёта, который летит быстрее звука. Как оказалось, преодоление звукового барьера требует определённых сил и отваги. В процессе полёта становится ясно, что нет никаких гарантий выжить. Даже профессиональный пилот не может точно сказать, выдержит ли конструкция самолёта атаку стихии. В считанные минуты самолёт может просто развалиться на части. Чем же это объясняется? Следует отметить, что движение с дозвуковой скоростью создаёт акустические волны, разбегающиеся как круги от упавшего камня. Сверхзвуковая скорость возбуждает ударные волны, а стоящий на земле человек слышит звук, похожий на взрыв. Без мощных вычислительных машин сложно было решить сложные и приходилось опираться на продувание моделей в аэродинамических трубах. Иногда при недостаточном ускорении самолёта ударная волна достигает такой силы, что вылетают окна из домов, над которыми пролетает самолёт. Преодолеть звуковой барьер сможет далеко не каждый, ведь в этот момент трясёт всю конструкцию, значительные повреждения могут получить крепления аппарата. Поэтому для пилотов так важно крепкое здоровье и эмоциональная стабильность. Если полёт идёт мягко, а звуковой барьер преодолён максимально быстро, то ни пилот, ни возможные пассажиры не почувствуют особо неприятных ощущений. Специально для покорения звукового барьера был сооружён исследовательский летательный аппарат в январе 1946 года. Создание машины было инициировано заказом министерства обороны, но взамен оружия её напичкали научной аппаратурой, которая отслеживала режим работы механизмов и приборов. Этот самолёт походил на современную крылатую ракету со встроенным ракетным двигателем. Преодоление самолётом звукового барьера происходило при максимальной скорости 2736 км/ч.

Вербальные и материальные памятники покорению скорости звука

Достижения в преодолении звукового барьера высоко ценятся и сегодня. Так, самолёт, на котором Чак Йегер впервые его преодолел, сейчас выставлен в Национальном музее воздухоплавания и космонавтики, который находится в Вашингтоне. Но технические параметры этого человеческого изобретения мало бы стоили без достоинств самого пилота. Чак Йегер прошёл лётное училище и воевал в Европе, после чего вернулся в Англию. Несправедливое отстранение от полётов не сломило дух Йегера, и он добился приёма у главнокомандующего войсками Европы. За годы, оставшиеся до конца войны, Йегер участвовал в 64 боевых вылетах, во время которых сбил 13 самолётов. На родину Чак Йегер вернулся со званием капитана. В его характеристике указана феноменальная интуиция, невероятное хладнокровие и выдержка в критических ситуациях. Не один раз Йегер устанавливал рекорды на своём самолёте. Его дальнейшая карьера шла в подразделениях ВВС, где он осуществлял тренинг пилотов. В последний раз Чак Йегер преодолел звуковой барьер в 74 года, что пришлось на пятидесятую годовщину его истории полётов и на 1997 год.

Комплексные задачи создателей летательных аппаратов

Известные на весь мир самолеты МиГ-15 стали создавать в тот момент, когда разработчики поняли, что невозможно базироваться только на преодолении звукового барьера, а следует решать комплексные технические задачи. В результате была создана машина настолько удачная, что её модификации встали на вооружение разных стран. Несколько различных конструкторских бюро включились в своеобразную конкурентную борьбу, призом в которой был патент на самый успешный и функциональный летательный аппарат. Разрабатывались самолёты со стреловидными крыльями, что было революцией в их конструкции. Идеальный аппарат должен был быть мощным, быстрым и невероятно устойчивым к любым повреждениям извне. Стреловидные крылья у самолётов стали элементом, который помогал им втрое повышать скорость звука. Далее продолжала нарастать, что объяснялось увеличением мощности двигателей, применением инновационных материалов и оптимизацией аэродинамических параметров. Преодоление звукового барьера стало возможным и реальным даже для непрофессионала, но менее опасным оно от этого не становится, поэтому любой экстремал должен здраво оценивать свои силы, прежде чем решиться на такой эксперимент.

Звуковой барьер в аэродинамике - название ряда явлений, сопровождающих движение летательного аппарата (например, сверхзвукового самолёта, ракеты) на скоростях, близких к скорости звука или превышающих её.

При обтекании сверхзвуковым газовым потоком твёрдого тела на его передней кромке образуется ударная волна (иногда не одна, в зависимости от формы тела). На фото видны ударные волны, образованные на острие фюзеляжа модели, на передней и задней кромках крыла и на заднем окончании модели.

На фронте ударной волны (называемой иногда также скачком уплотнения), имеющем очень малую толщину (доли мм), почти скачкообразно происходят кардинальные изменения свойств потока - его скорость относительно тела снижается и становится дозвуковой, давление в потоке и температура газа скачком возрастают. Часть кинетической энергии потока превращается во внутреннюю энергию газа. Все эти изменения тем больше, чем выше скорость сверхзвукового потока. При гиперзвуковых скоростях (5 и выше Махов) температура газа достигает нескольких тысяч градусов, что создаёт серьёзные проблемы для аппаратов, движущихся с такими скоростями (например, шаттл «Колумбия» разрушился 1 февраля 2003 года из-за повреждения термозащитной оболочки, возникшего в ходе полёта).

Когда эта волна достигает наблюдателя, находящегося, например, на Земле, он слышит громкий звук, похожий на взрыв. Распространенным заблуждением является мнение, будто бы это следствие достижения самолётом скорости звука, или «преодоления звукового барьера». На самом деле, в этот момент мимо наблюдателя проходит ударная волна, которая постоянно сопровождает самолёт, движущийся со сверхзвуковой скоростью. Обычно сразу после «хлопка» наблюдатель может слышать гул двигателей самолёта, не слышный до прохождения ударной волны, поскольку самолёт двигается быстрее звуков, издаваемых им. Очень похожее наблюдение имеет место при дозвуковом полёте - самолёт летящий над наблюдателем на большой высоте (больше 1 км) не слышен, точнее слышим с опозданием: направление на источник звука не совпадает с направлением на видимый самолёт для наблюдателя с земли.

Уже в ходе Второй мировой войны скорость истребителей стала приближаться к скорости звука. При этом пилоты иногда стали наблюдать непонятные в то время и угрожающие явления, происходящие с их машинами при полётах с предельными скоростями. Сохранился эмоциональный отчёт лётчика ВВС США своему командиру генералу Арнольду:
«Сэр, наши самолёты уже сейчас очень строги. Если появятся машины с еще большими скоростями, мы не сможем летать на них. На прошлой неделе я на своем „Мустанге“ спикировал на Me-109. Мой самолёт затрясся, словно пневматический молоток, и перестал слушаться рулей. Я никак не мог вывести его из пике. Всего в трехстах метрах от земли я с трудом выровнял машину…».

После войны, когда многие авиаконструкторы и лётчики-испытатели предпринимали настойчивые попытки достичь психологически значимой отметки - скорости звука, эти непонятные явления становились нормой, и многие из таких попыток закончились трагически. Это и вызвало к жизни не лишённое мистики выражение «звуковой барьер» (фр. mur du son, нем. Schallmauer - звуковая стена). Пессимисты утверждали, что этот предел превзойти невозможно, хотя энтузиасты, рискуя жизнью, неоднократно пытались сделать это. Развитие научных представлений о сверхзвуковом движении газа позволило не только объяснить природу «звукового барьера», но и найти средства его преодоления.

Исторические факты

* Первым пилотом, достигшим сверхзвуковой скорости в управляемом полёте, стал американский лётчик-испытатель Чак Йегер на экспериментальном самолёте Bell X-1 (с прямым крылом и ракетным двигателем XLR-11) достигший в пологом пикировании скорости М=1.06. Это произошло 14 октября 1947 года.
* В СССР звуковой барьер впервые был преодолён 26 декабря 1948 года Соколовским, а потом и Фёдоровым, в полётах со снижением на опытном истребителе Ла-176.
* Первым гражданским самолётом, преодолевшим звуковой барьер, стал пассажирский лайнер Douglas DC-8. 21 августа 1961 г. он достиг скорости 1.012 М или 1262 км/ч в ходе управляемого пике с высоты 12496 м. Полёт предпринимался с целью собрать данные для проектирования новых передних кромок крыла.
* 15 октября 1997 года, спустя 50 лет после преодоления звукового барьера на самолёте, англичанин Энди Грин преодолел звуковой барьер на автомобиле Thrust SSC.
* 14 октября 2012 года Феликс Баумгартнер стал первым человеком, преодолевшим звуковой барьер без помощи какого-либо моторизированного транспортного средства, в свободном падении во время прыжка с высоты 39 километров. В свободном падении он достиг скорости 1342,8 километра в час.

Фото:
* http://commons.wikimedia.org/wiki/File:F-18-diamondback_blast.jpg
* http://commons.wikimedia.org/wiki/File:Sonic_boom_cloud.jpg
* http://commons.wikimedia.org/wiki/File:F-14D_Tomcat_breaking_sound_barrier.jpg
* http://commons.wikimedia.org/wiki/File:B-1B_Breaking_the_sound_barrier.jpg
* http://commons.wikimedia.org/wiki/File:Transonic_Vapor_F-16_01.jpg
* http://commons.wikimedia.org/wiki/File:FA-18F_Breaking_SoundBarrier.jpg
* http://commons.wikimedia.org/wiki/File:Supersonic_aircraft_breaking_sound_barrier.jpg
* http://commons.wikimedia.org/wiki/File:FA18_faster_than_sound.jpg
* http://commons.wikimedia.org/wiki/File:FA-18_Super_Hornet_VFA-102.jpg
* http://it.wikipedia.org/wiki/File:F-22_Supersonic_Flyby.jpg



Впрочем, обо всем по порядку. Впервые звуковой барьер преодолел американский летчик-испытатель Чак Йегер на экспериментальном самолете Bell X-1 (с прямым крылом и ракетным двигателем XLR-11). Это случилось семьдесят с лишним лет назад - в 1947 году. Ему удалось разогнаться быстрее скорости звука, направив самолет в пологое пикирование. Спустя год это же удалось и советским летчикам-испытателям Соколовскому и Федорову на экспериментальном, существовавшем в единственном экземпляре истребителе Ла-176.

Это были сложные для авиации времена. Летчики буквально по крупицам собирали опыт, каждый раз рискуя жизнями, чтобы узнать, возможны ли полеты на скоростях выше одного Маха. Флаттер крыла, волновое сопротивление унесли не одну жизнь, до того как конструкторы научились бороться с этими явлениями.

Все дело в том, что при преодолении скорости звука резко возрастает аэродинамическое сопротивление и растет кинетический нагрев конструкции от трения набегающего воздушного потока. Кроме того, в этот момент фиксируется смещение аэродинамического фокуса, что ведет к утрате устойчивости и управляемости самолета.

Спустя 12 лет серийные сверхзвуковые истребители МиГ-19 уже охотились за американскими самолетами-шпионами, а еще ни один гражданский самолет не попытался превысить скорость звука. Это произошло лишь 21 августа 1961 года: пассажирский самолет Douglas DC-8, упав в пике, разогнался до 1,1 Маха. Полет был экспериментальным, с целью собрать больше информации об поведении машины на таких скоростях.

Спустя еще некоторое время в воздух поднялись советский Ту-144 и британо-французский «Конкорд». Практически одновременно: наша машина чуть раньше, 31 декабря 1968 года, а европейская - в марте 1969-го. А вот по объему перевезенных пассажиров за все время эксплуатации моделей капиталисты нас сильно перещеголяли. Если на счету Ту-144 всего чуть больше 3000 пассажиров, то «Конкорды», работая до 2003 года, перевезли более 2,5 миллиона человек. Впрочем, и это не помогло проекту. В конечном счете он был закрыт, очень некстати оказалась и громкая катастрофа под Парижем, в которой никакой вины сверхзвукового самолета не было.

Три ответа «нет»

В качестве железной причины бесперспективности коммерческих сверхзвуковых самолетов обычно приводятся три довода - слишком дорого, слишком сложно, слишком громко. И действительно, каждый, кто наблюдал полет реактивного сверхзвукового военного самолета, никогда не забудет ощущение удара по ушам и того дикого грохота, с которым мимо тебя пролетает самолет на сверхзвуке.

К слову, звуковой удар это не одномоментное явление, он сопровождает самолет по всему пути следования, все время, когда скорость летательного аппарата выше скорости звука. Сложно спорить и с тем, что топлива реактивный самолет потребляет столько, что, кажется, проще его сразу заправлять банкнотами.

Говоря о современных проектах сверхзвукового пассажирского самолета в первую очередь нужно ответить на каждый из этих вопросов. Только в этом случае можно надеяться на то, что все существующие проекты окажутся не мертворожденными.

Звук

Конструкторы решили начать со звука. За последние годы появилось много научных работ, доказывающих, что определенная форма фюзеляжа и крыльев может снизить количество ударных волн, создаваемых самолетом, и уменьшить их интенсивность. Подобное решение потребовало полной переработки корпусов, многократной компьютерной проработки моделей и нескольких тысяч часов продувки будущих самолетов в аэротрубе.

Основные проекты, работающие над аэродинамикой самолета будущего, это QueSST от специалистов из NASA и японская разработка D-SEND-2, создаваемая под эгидой местного Агентства аэрокосмических исследований JAXA. Оба эти проекта ведутся уже несколько лет, планомерно подбираясь к «идеальной» для сверхзвуковых полетов аэродинамике.

Предполагается, что новые сверхзвуковые пассажирские самолеты будут создавать не резкий и жесткий звуковой удар, а гораздо более приятные уху мягкие звуковые пульсации. То есть будет, конечно, все равно громко, но не «громко и больно». Еще одним способом решения проблемы звукового барьера стало уменьшение размеров самолета. Почти все разработки, ведущиеся в настоящее время, - это небольшие летательные аппараты, способные на перевозку 10-40 пассажиров максимум.

Однако есть и в этом вопросе компании-выскочки. В сентябре прошлого года бостонская авиакомпания Spike Aerospace объявила о том, что у них уже практически готова модель сверхзвукового пассажирского самолета S-512 Quiet Supersonic Jet. Предполагается, что летные испытания начнутся уже в 2018 году, а первый самолет с пассажирами на борту стартует не позже конца 2023 года.

Еще более дерзким оказалось заявление создателей, что со звуком проблема практически решена и первые испытания покажут это. Думается, что специалисты из NASA и JAXA, потратившие на решение этой проблемы много лет, будут следить за испытаниями более чем внимательно.

Также существует еще одно интересное решение проблемы звука - это преодоление звукового барьера самолетом при практически вертикальном взлете. В таком случае действие ударных волн окажется слабее, а после набора высоты в 20-30 тысяч метров об этой проблеме можно будет забыть - слишком далеко от Земли.

Двигатели

Работа над двигателями для будущих сверхзвуковых самолетов тоже не прекращается. Даже дозвуковые двигатели за последние годы смогли прилично прибавить в мощности и экономичности за счет внедрения специальных редукторов, керамических материалов и введения дополнительного воздушного контура.

Со сверхзвуковыми самолетами все немного сложнее. Дело в том, что при современном уровне технологического развития турбореактивные двигатели способны достигать максимальной скорости в 2,2 Маха (около 2500 километров в час), для достижения же большей скорости требуется использовать прямоточные двигатели, способные разогнать летательный аппарат до гиперзвуковых скоростей (более 5 чисел Маха). Впрочем, это - пока что - скорее фантастика.

По словам разработчиков, им удается уже в настоящее время достигнуть себестоимости полета на 30 процентов меньшей, чем у «Конкорда», даже при небольшом количестве пассажиров. Такие данные обнародовал стартап Boom Technologies в 2016 году. По их мнению, билет по маршруту Лондон-Нью-Йорк будет стоить около $ 5000, что сопоставимо с ценой за билет при полете первым классом на обычном, дозвуковом самолете.



Онлайн калькуляторы