Теплофикационные станции. Теплоэлектроцентрали (ТЭЦ). Что такое АЭС, ТЭЦ и ТЭС

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. «А что это такое?» – спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: «Это ж градирни, ты что, не знаешь?». Она немного смутилась: «А для чего они нужны?» «Ну что-то там охлаждать, вроде бы». «А чего?». Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Согласно Википедии ТЭЦ – сокращенное от теплоэлектроцентраль – это разновидность тепловой станции, которая производит не только электроэнергию, но и является источником тепла, в виде пара или горячей воды.

О том как все устроено, я расскажу ниже, а здесь можно посмотреть парочку упрощенных схем работы станции.

Итак, все начинается с воды. Поскольку вода (и пар, как её производное) на ТЭЦ является основным теплоносителем, перед тем как она попадет в котел, её необходимо предварительно подготовить. Для того, что бы в котлах не образовывалась накипь, на первом этапе, воду необходимо умягчить, а на втором, очистить её от всевозможных примесей и включений.

Происходит все это на территории химического цеха, в котором расположены все эти емкости и сосуды.

Вода перекачивается огромными насосами.

Работа цеха контролируется отсюда.

Вокруг много кнопочек…

Датчиков…

А также совсем непонятных элементов…

Качество воды проверяется в лаборатории. Здесь все по-серьезному…

Полученную здесь воду, в дальнейшем мы будем называть «Чистой водой».

Итак, с водой разобрались, теперь нам нужно топливо. Обычно это газ, мазут или уголь. На Чебоксарской ТЭЦ-2 основным видом топлива является газ, поступающий по магистральному газопроводу Уренгой – Помары – Ужгород. На многих станциях существует пункт подготовки топлива. Здесь природный газ, так же как и вода очищается от механических примесей, сероводорода и углекислого газа.

ТЭЦ – объект стратегический, работающий 24 часа в сутки и 365 дней в году. Поэтому здесь везде, и на всё, есть резерв. Топливо не является исключением. В случае отсутствия природного газа, наша станция может работать на мазуте, который хранится в огромных емкостях, расположенных через дорогу.

Теперь мы получили Чистую воду и подготовленное топливо. Следующий пункт нашего путешествия – котлотурбинный цех.

Состоит он из двух отделений. В первом находятся котлы. Нет, не так. В первом находятся КОТЛЫ. По другому написать, рука не поднимается, каждый, с двенадцатиэтажный дом. Всего на ТЭЦ-2 их пять штук.

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается «Чистая вода». После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его «Чистый пар», потому что он образован из подготовленной воды.

Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Чтобы вывести продукты сгорания, нужна недетская «дымовая» труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленный портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.

Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся «Чистый пар» отпускать на сторону невыгодно. Так как он образован из «Чистой воды», производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. И так по замкнутому кругу. Зато с его помощью и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем-то именно таким образом мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

May 29th, 2013

Оригинал взят у zao_jbi в посте Что такое ТЭЦ и как она работает.

Однажды, когда мы въезжали в славный город Чебоксары, с восточного направления моя супруга обратила внимание на две огромные башни, стоящие вдоль шоссе. "А что это такое?" - спросила она. Поскольку мне абсолютно не хотелось показать жене свою неосведомленность, я немного покопался в своей памяти и выдал победное: "Это ж градирни, ты что, не знаешь?". Она немного смутилась: "А для чего они нужны?" "Ну что-то там охлаждать, вроде бы". "А чего?". Потом смутился я, потому что совершенно не знал как выкручиваться дальше.

Может быть этот вопрос, так и остался навсегда в памяти без ответа, но чудеса случаются. Через несколько месяцев после этого случая, вижу в своей френдленте пост z_alexey о наборе блогеров, желающих посетить Чебоксарскую ТЭЦ-2, ту самую, что мы видели с дороги. Приходиться резко менять все свои планы, упустить такой шанс будет непростительно!

Так что же такое ТЭЦ?

Это сердце ТЭЦ, и здесь происходит основное действие. Газ, поступающий в котел, сгорает, выделяя сумасшедшее количество энергии. Сюда же подается "Чистая вода". После нагрева она превращается в пар, точнее в перегретый пар, имеющий температуру на выходе 560 градусов, а давление 140 атмосфер. Мы тоже назовем его "Чистый пар", потому что он образован из подготовленной воды.
Кроме пара, на выходе мы еще имеем выхлоп. На максимальной мощности, все пять котлов потребляют почти 60 кубометров природного газа в секунду! Что бы вывести продукты сгорания нужна недетская "дымовая" труба. И такая тоже имеется.

Трубу видно практически из любого района города, учитывая высоту 250 метров. Подозреваю, что это самое высокое строение в Чебоксарах.

Рядом находится труба чуть поменьше. Снова резерв.

Если ТЭЦ работает на угле, необходима дополнительная очистка выхлопа. Но в нашем случае этого не требуется, так как в качестве топлива используется природный газ.

В втором отделении котлотурбинного цеха находятся установки, вырабатывающие электроэнергию.

В машинном зале Чебоксарской ТЭЦ-2 их установлено четыре штуки, общей мощностью 460 МВт (мегаватт). Именно сюда подается перегретый пар из котельного отделения. Он, под огромным давлением направляется на лопатки турбины, заставляя вращаться тридцатитонный ротор, со скоростью 3000 оборотов в минуту.

Установка состоит из двух частей: собственно сама турбина, и генератор, вырабатывающий электроэнергию.

А вот как выглядит ротор турбины.

Повсюду датчики и манометры.

И турбины, и котлы, в случае аварийной ситуации можно остановить мгновенно. Для этого существуют специальные клапаны, способные перекрыть подачу пара или топлива за какие-то доли секунды.

Интересно, а есть такое понятие как промышленный пейзаж, или промышленной портрет? Здесь есть своя красота.

В помещении стоит страшный шум, и чтобы расслышать соседа приходиться сильно напрягать слух. К тому же очень жарко. Хочется снять каску и раздеться до футболки, но делать этого нельзя. По технике безопасности, одежда с коротким рукавом на ТЭЦ запрещена, слишком много горячих труб.
Основную часть времени цех пустой, люди здесь появляются один раз в два часа, во время обхода. А управление работой оборудования ведется с ГрЩУ (Групповые щиты управления котлами и турбинами).

Вот так выглядит рабочее место дежурного.

Вокруг сотни кнопок.

И десятки датчиков.

Есть механические, есть электронные.

Это у нас экскурсия, а люди работают.

Итого, после котлотурбинного цеха, на выходе мы имеем электроэнергию и частично остывший и потерявший часть давления пар. С электричеством вроде бы попроще. На выходе с разных генераторов напряжение может быть от 10 до 18 кВ (киловольт). С помощью блочных трансформаторов, оно повышается до 110 кВ, а дальше электроэнергию можно передавать на большие расстояния с помощью ЛЭП (линий электропередач).

Оставшийся "Чистый пар" отпускать на сторону невыгодно. Так как он образован из "Чистой воды", производство которой довольно сложный и затратный процесс, его целесообразней охладить и вернуть обратно в котел. Итак по замкнутому кругу. Зато с его помощью, и с помощью теплообменников можно нагреть воду или произвести вторичный пар, которые спокойно продавать сторонним потребителям.

В общем то именно таким образом, мы с вами получаем тепло и электричество в свои дома, имея привычный комфорт и уют.

Ах, да. А для чего же все-таки нужны градирни?

Оказывается все очень просто. Что бы охладить, оставшийся "Чистый пар", перед новой подачей в котел, используются все те же теплообменники. Охлаждается он при помощи технической воды, на ТЭЦ-2 ее берут прямо с Волги. Она не требует какой-то специальной подготовки и также может использоваться повторно. После прохождения теплообменника техническая вода нагревается и уходит на градирни. Там она стекает тонкой пленкой вниз или падает вниз в виде капель и охлаждается за счет встречного потока воздуха, создаваемого вентиляторами. А в эжекционных градирнях вода распыляется с помощью специальных форсунок. В любом случае основное охлаждение происходит за счет испарения небольшой части воды. С градирен остывшая вода уходит по специальному каналу, после чего, с помощью насосной станции отправляется на повторное использование.
Одним словом, градирни нужны, что бы охлаждать воду, которая охлаждает пар, работающий в системе котел - турбина.

Вся работа ТЭЦ, контролируется из Главного Щита Управления.

Здесь постоянно находится дежурный.

Все события заносятся в журнал.

Меня хлебом не корми, дай сфотографировать кнопочки и датчики...

На этом, почти все. В завершение осталось немного фотографий станции.

Это старая, уже не рабочая труба. Скорее всего скоро ее снесут.

На предприятии очень много агитации.

Здесь гордятся своими сотрудниками.

И их достижениями.

Похоже, что не напрасно...

Осталось добавить, что как в анекдоте - "Я не знаю, кто эти блогеры, но экскурсовод у них директор филиала в Марий Эл и Чувашии ОАО "ТГК-5", КЭС холдинга - Добров С.В."

Вместе с директором станции С.Д. Столяровым.

Без преувеличения - настоящие профессионалы своего дела.

Ну и конечно, огромное спасибо Ирине Романовой, представляющей пресс-службу компании, за прекрасно организованный тур.

Как устроена ТЭЦ? Агрегаты ТЭЦ. Оборудование ТЭЦ. Принципы работы ТЭЦ. ПГУ-450.

Здравствуйте , дорогие дамы и уважаемые господа!

Когда я учился в Московском Энергетическом Институте, мне не хватало практики. В институте имеешь дело в основном с "бумажками", а мне уже скорей хотелось видеть "железки". Часто было трудно понять, как устроен тот или иной агрегат, никогда ранее его не видя. Предлагаемые студентам эскизы не всегда позволяют понять полную картину, и мало кто себе мог представить истинную конструкцию, например, паровой турбины, рассматривая только картинки в книжке.

Данная страница призвана заполнить существующий пробел и предоставить всем интересующимся пусть не слишком подробную, но зато наглядную информацию о том как "изнутри" устроено оборудование Тепло-Электро Централи (ТЭЦ). В статье рассмотрен достаточно новый для России тип энергоблока ПГУ-450, использующий в своей работе смешанный цикл - парогазовый (большинство ТЭЦ используют пока только паровой цикл).

Преимущество данной страницы в том, что фотографии, представленные на ней, выполнены в момент строительства энергоблока, что позволило отснять устройство некоторого технологического оборудования в разобранном виде. На мой взгляд, данная страница окажется наиболее полезна для студентов энергетических специальностей - для понимания сути изучаемых вопросов, а также для преподавателей - для использования отдельных фотографий в качестве методического материала.

Источником энергии для работы данного энергоблока является природный газ. При сгорании газа выделяется тепловая энергия, которая затем используется для работы всего оборудования энергоблока.

Всего в схеме энергоблока работают три энергетические машины: две газовые турбины и одна паровая. Каждая из трех машин рассчитана на номинальную электрическую вырабатываемую мощность 150МВт.

Газовые турбины по принципу действия схожи с двигателями реактивных самолетов.

Для работы газовых турбин необходимы два компонента: газ и воздух. Воздух, с улицы, поступает через воздухозаборники. Воздухозаборники закрыты решетками, чтобы защитить газотурбинную установку от попадания птиц и всякого мусора. В них же смонтирована антиоблединительная система, предотвращающая намерзание льда в зимний период времени.

Воздух поступает на вход компрессора газотурбинной установки (осевого типа). После этого, в сжатом виде, он попадает в камеры сгорания, куда кроме воздуха подводится природный газ. Всего на каждой газотурбинной установке установлено по две камеры сгорания. Они расположены по бокам. На первой фотографии ниже воздуховод еще не смонтирован, а левая камера сгорания закрыта целлофановой пленкой, на второй - вокруг камер сгорания уже смонтирован помост, установлен электрогенератор:

На каждой камере сгорания установлено по 8 газовых горелок:

В камерах сгорания происходит процесс горения газовоздушной смеси и выделение тепловой энергии. Вот как выглядят камеры сгорания "изнутри" - как раз там, где непрерывно горит пламя. Стенки камер выложены огнеупорной футеровкой:

В нижней части камеры сгорания расположено маленькое смотровое окошечко, позволяющее наблюдать происходящие в камере сгорания процессы. Видеоролик ниже демонстрирует процесс горения газовоздушной смеси в камере сгорания газотурбинной установки в момент ее запуска и при работе на 30% номинальной мощности:

Воздушный компрессор и газовая турбина находятся на одном и том же валу, и часть крутящего момента турбины используется для привода компрессора.

Турбина производит больше работы, чем требуется для привода компрессора, и избыток этой работы используется для привода "полезной нагрузки". В качестве такой нагрузки используется электрогенератор электрической мощностью 150МВт - именно в нем вырабатывается электроэнергия. На фотографии ниже "серый сарай" - это как раз и есть электрогенератор. Электрогенератор также находится на одном валу с компрессором и турбиной. Все вместе вращается с частотой 3000 об/мин.

При прохождения газовой турбины продукты сгорания отдают ей часть своей тепловой энергии, однако далеко не вся энергия продуктов сгорания используется для вращения газовой турбины. Значительная часть этой энергии не может быть использована газовой турбиной, поэтому продукты сгорания на выходе газовой турбины (выхлопные газы) несут с собой еще очень много тепла (температура газов на выходе газовой турбины составляет порядка 500 ° С). В самолетных двигателях это тепло расточительно выбрасывается в окружающую среду, но на рассматриваемом энергоблоке оно используется далее - в паросиловом цикле. Для этого, выхлопные газы с выхода газовой турбины "вдуваются" снизу в т. н. "котлы-утилизаторы" - по одному на каждую газовую турбину. Две газовых турбины - два котла-утилизатора.

Каждый такой котел представляет собой сооружение высотой в несколько этажей.

В этих котлах тепловая энергия выхлопных газов газовой турбины используется для нагревания воды и превращения ее в пар. В последствии этот пар используется при работе в паровой турбине, но об этом чуть позже.

Для нагревания и испарения вода проходит внутри трубок диаметром примерно 30мм, расположенных горизонтально, а выхлопные газы от газовой турбины "омывают" эти трубки снаружи. Так происходит передача тепла от газов к воде (пару):

Отдав большую часть тепловой энергии пару и воде, выхлопные газы оказываются вверху котла-утилизатора и выводятся с помощью дымохода через крышу цеха:

С внешней стороны здания дымоходы от двух котлов-утилизаторов сходятся в одну вертикальную дымовую трубу:

Следующие фотографии позволяют оценить размеры дымоходов. На первой фотографии представлен один из "уголков", которыми дымоходы котлов-утилизаторов подсоединяются к вертикальному стволу дымовой трубы, на остальных фотографиях - процесс монтажа дымовой трубы.

Но вернемся к конструкции котлов-утилизаторов. Трубки, по которым проходит вода внутри котлов, разделены на множество секций - трубных пучков, которые образуют несколько участков:

1. Экономайзерный участок (который на данном энергоблоке имеет особое название - Газовый Подогреватель Конденсата - ГПК);

2. Испарительный участок;

3. Пароперегревательный участок.

Экономайзерный участок служит для подогрева воды от температуры порядка 40 ° С до температуры, близкой к температуре кипения. После этого вода поступает в деаэратор - стальную емкость, где параметры воды поддерживаются такими, что из нее начинают интенсивно выделятся растворенные в ней газы. Газы собираются вверху емкости и удаляются в атмосферу. Удаление газов, особенно кислорода, необходимо для предотвращения быстрой коррозии технологического оборудования, с которым контактирует наша вода.

Пройдя деаэратор, вода приобретает название "питательная вода" и поступает на вход питательных насосов. Вот как выглядели питательные насосы, когда их только что привезли на станцию (всего их 3шт.):

Питательные насосы имеют электропривод (асинхронные двигатели питаются от напряжения 6кВ и имеют мощность 1.3МВт). Между самим насосом и электромотором находится гидромуфта - агрегат , позволяющий плавно изменять частоту вращения вала насоса в широких пределах.

Принцип действия гидромуфты схож с принципом действия гидромуфты в автоматических коробках передач автомобилей.

Внутри находятся два колеса с лопатками, одно "сидит" на валу электромотора, второе - на валу насоса. Пространство между колесами может быть заполнено маслом на разный уровень. Первое колесо, вращаемое двигателем, создает поток масла, "ударяющийся" в лопатки второго колеса, и вовлекающий его во вращение. Чем больше масла будет залито между колесами, тем лучшее "сцепление" будут иметь валы между собой, и тем большая механическая мощность будет передана через гидромуфту к питательному насосу.

Уровень масла между колесами изменяется с помощью т. н. "черпаковой трубы", откачивающей масло из пространства между колес. Регулирование положения черпаковой трубы осуществляется с помощью специального исполнительного механизма.

Сам по себе питательный насос центробежный, многоступенчатый. Заметьте, этот насос развивает полное давление пара паровой турбины и даже превышает его (на величину гидравлических сопротивлений оставшейся части котла-утилизатора, гидравлических сопротивлений трубопроводов и арматуры).

Конструкцию рабочих колес нового питательного насоса увидеть не удалось (т. к. он уже был собран), но на территории станции удалось обнаружить части старого питательного насоса схожей конструкции. Насос состоит из чередующихся вращающихся центробежных колес и неподвижных направляющих дисков.

Неподвижный направляющий диск:

Рабочие колеса:

С выхода питательных насосов питательная вода подается в т. н. "барабаны-сепараторы" - горизонтальные стальные емкости, предназначенные для разделения воды и пара:

На каждом котле-утилизаторе установлены по два барабана-сепаратора (всего 4 на энергоблоке). В совокупности с трубками испарительных секций внутри котлов-утилизаторов, они образуют контуры циркуляции пароводяной смеси. Работает это следующим образом.

Вода с температурой, близкой к температуре кипения, поступает внутрь трубок испарительных секций, протекая по которым догревается до температуры кипения и затем частично превращается в пар. На выходе испарительного участка мы имеем пароводяную смесь, которая поступает в барабаны-сепараторы. Внутри барабанов-сепараторов смонтированы специальные устройства

Которые помогают отделить пар от воды. Пар затем подается на пароперегревательный участок, где его температура еще более увеличивается, а отделенная в барабане-сепараторе (отсепарированная) вода смешивается с питательной водой и снова поступает в испарительный участок котла-утилизатора.

После пароперегревательного участка пар из одного котла-утилизатора смешивается с таким же паром второго котла-утилизатора и поступает на турбину. Его температура столь высока, что трубопроводы, по которым он проходит, если снять с них теплоизоляцию, - светятся в темноте темно-красным свечением. И теперь этот пар подается на паровую турбину, чтобы отдать в ней часть своей тепловой энергии и совершить полезную работу.

Паровая турбина имеет 2 цилиндра - цилиндр высокого давления и цилиндр низкого давления. Цилиндр низкого давления - двухпоточный. В нем пар разделяется на 2 потока, работающих параллельно. В цилиндрах находятся роторы турбины. Каждый ротор, в свою очередь, состоит из ступеней - дисков с лопатками. "Ударяясь" в лопатки, пар заставляет роторы вращаться. Фотография ниже отражает общую конструкцию паровой турбины: ближе к нам - ротор высокого давления, дальше от нас - двухпоточный ротор низкого давления

Вот так выглядел ротор низкого давления, когда его только распаковали из заводской упаковки. Заметьте, он имеет только 4 ступени (а не 8):

А вот ротор высокого давления при ближайшем рассмотрении. Он имеет 20 ступеней. Обратите также внимание на массивный стальной корпус турбины, состоящий из двух половинок - нижней и верхней (на фото только нижняя), и шпильки, с помощью которых эти половинки соединяется друг с другом. Чтобы при пуске корпус быстрее, но, в то же время, более равномерно прогревался, используется система парового обогрева "фланцев и шпилек" - видите специальный канал вокруг шпилек? Именно через него проходит специальный поток пара для прогрева корпуса турбины при ее пуске.

Чтобы пар "ударялся" в лопатки роторов и заставлял их вращаться, этот пар сначала нужно направить и ускорить в нужном направлении. Для этого используются т. н. сопловые решетки - неподвижные секции с неподвижными лопатками, размещенные между вращающимися дисками роторов. Сопловые решетки НЕ вращаются - они НЕподвижны, и служат только для направления и ускорения пара в нужном направлении. На фотографии ниже пар проходит "из за этих лопаток на нас" и "раскручивается" вокруг оси турбины против часовой стрелки. Далее, "ударяясь" во вращающиеся лопатки дисков ротора, которые находятся сразу за сопловой решеткой, пар передает свое "вращение" ротору турбины.

На фотографии ниже можно видеть части сопловых решеток, подготовленные для монтажа

А на этих фотографиях - нижнюю часть корпуса турбины с уже установленными в нее половинками сопловых решеток:

После этого в корпус "вкладывается" ротор, монтируются верхние половинки сопловых решеток, затем верхняя часть корпуса, далее различные трубопроводы, теплоизоляция и кожух:

Пройдя через турбину, пар поступает в конденсаторы. У данной турбины два конденсатора - по числу потоков в цилиндре низкого давления. Посмотрите на фотографию ниже. На ней хорошо видна нижняя часть корпуса паровой турбины. Обратите внимание на прямоугольные части корпуса цилиндра низкого давления, закрытые сверху деревянными щитами. Это - выхлопы паровой турбины и входы в конденсаторы.

Когда корпус паровой турбины оказывается полностью собран, на выходах цилиндра низкого давления образуется пространство, давление в котором при работе паровой турбины примерно в 20 раз ниже атмосферного, поэтому корпус цилиндра низкого давления проектируется не на сопротивление давлению изнутри, а на сопротивление давлению снаружи - т. е. атмосферному давлению воздуха. Сами конденсаторы находятся под цилиндром низкого давления. На фото ниже - это прямоугольные емкости с двумя люками на каждой.

Конденсатор устроен схоже с котлом-утилизатором. Внутри него находится множество трубок диаметром примерно 30мм. Если мы откроем один из двух люков каждого конденсатора и заглянем внутрь, мы увидим "трубные доски":

Сквозь эти трубки протекает охлаждающая вода, которая называется технической водой. Пар с выхлопа паровой турбины оказывается в пространстве между трубками снаружи них (за трубной доской на фото выше), и, отдавая остаточное тепло технической воде через стенки трубок, конденсируется на их поверхности. Конденсат пара стекает вниз, накапливается в конденсатосборниках (в нижней части кондесаторов), после чего попадает на вход конденсатных насосов. Каждый конденсатный насос (а всего их 5) приводится во вращение трехфазным асинхронным электродвигателем, рассчитанным на напряжение 6кВ.

С выхода конденсатных насосов вода (конденсат) снова поступает на вход экономайзерных участков котлов-утилизаторов и, тем самым, паросиловой цикл замыкается. Вся система является почти герметичной и вода, являющаяся рабочим телом, многократно превращается в пар в котлах-утилизаторах, в виде пара совершает работу в турбине, чтобы снова превратиться в воду в конденсаторах турбины и т. д.

Эта вода (в виде воды или пара) постоянно контактирует с внутренними деталям технологического оборудования, и чтобы не вызывать их быструю коррозию и износ - специальным образом химически подготавливается.

Но вернемся к конденсаторам паровой турбины.

Техническая вода, нагретая в трубках конденсаторов паровой турбины, по подземным трубопроводам технического водоснабжения выводится из цеха и подается в градирни - чтобы в них отдать тепло, отнятое у пара из турбины, окружающей атмосфере. На фотографиях ниже приведена конструкция градирни, возведенной для нашего энергоблока. Принцип ее работы основан на разбрызгивании внутри градирни теплой технической воды с помощью душирующих устройств (от слова "душ"). Капли воды падают вниз и отдают свое тепло воздуху, находящемуся внутри градирни. Нагретый воздух поднимается вверх, а на его место снизу градирни приходит холодный воздух с улицы.

Вот как выглядит градирня у своего основания. Именно через "щель" снизу градирни приходит холодный воздух для охлаждения технической воды

Снизу градирни находится водосборный бассейн, куда падают и где собираются капли технической воды, выпущенные из душирующих устройств и отдавшие свое тепло воздуху. Над бассейном расположена система раздающих труб, по которым теплая техническая вода подводится к душирующим устройствам

Пространство над и под душирующими устройствами заполняется специальной набивкой из пластмассовых жалюзи. Нижние жалюзи предназначены для более равномерного распределения "дождя" по площади градирни, а верхние жалюзи - для улавливания мелких капелек воды и предотвращения излишнего уноса технической воды вместе с воздухом через верх градирни. Однако, на момент отснятия представленных фотографий, пластмассовые жалюзи еще не были установлены.

Бо "льшая же по высоте часть градирни ничем не заполнена и предназначена только для создания тяги (нагретый воздух поднимается вверх). Если мы встанем над раздающими трубопроводами, мы увидим, что выше ничего нет и остальная часть градирни - пустая

Следующий видеоролик передает впечатления от нахождения внутри градирни

На тот момент, когда были отсняты фотографии этой странички, градирня, построенная для нового энергоблока - еще не функционировала. Однако, на территории данной ТЭЦ были другие градирни, которые работали, что позволило запечатлеть похожую градирню в работе. Стальные жалюзи внизу градирни предназначены для регулирования потока холодного воздуха и предотвращения переохлаждения технической воды в зимний период времени

Охлажденная и собранная в бассейне градирни техническая вода снова подается на вход трубок конденсатора паровой турбины, чтобы отнять у пара новую порцию тепла и т. д. Кроме того, техническая вода используется для охлаждения прочего технологического оборудования, например, электрогенераторов.

Следующий видеоролик показывает, как в градирне охлаждается техническая вода.

Поскольку техническая вода непосредственно контактирует с окружающим воздухом, в нее попадает пыль, песок, трава и прочая грязь. Поэтому на входе этой воды в цех, на входном трубопроводе технической воды, установлен самоочищающийся фильтр. Этот фильтр состоит из нескольких секций, укрепленных на вращающемся колесе. Через одну из секций, время от времени, организуется обратный поток воды для ее промывки. Затем колесо с секциями поворачивается, и начинается промывка следующей секции и т. д.

Вот так выглядит этот самоочищающийся фильтр изнутри трубопровода технической воды:

А так снаружи (приводной электромотор еще не смонтирован):

Здесь следует сделать отступление и сказать, что монтаж всего технологического оборудования в турбинном цехе осуществляется с помощью двух мостовых кранов. Каждый кран имеет по три отдельных лебедки, предназначенных для работы с грузами разных масс.

Теперь я бы хотел немного рассказать об электрической части данного энергоблока.

Электроэнергия вырабатывается с помощью трех электрогенераторов, приводимых во вращение двумя газовыми и одной паровой турбиной. Часть оборудования для монтажа энергоблока была привезена автотранспортом, а часть железнодорожным. Прямо в турбинный цех проложена железная дорога, по которой при строительстве энергоблока подвозили крупногабаритное оборудование.

На фотографии ниже запечатлен процесс доставки статора одного из электрогенераторов. Напомню, что каждый электрогенератор имеет номинальную электрическую мощность 150МВт. Заметьте, что железнодорожная платформа, на которой привезли статор электрогенератора, имеет 16 осей (32 колеса).

Железная дорога имеет в месте въезда в цех небольшое закругление, и учитывая, что колеса каждой колесной пары жестко закреплены на своих осях, при движении на закругленном участке железной дороги одно из колес каждой колесной пары вынуждено проскальзывать (т. к. на закруглении рельсы имеют разную длину). Приведенный ниже видеоролик показывает, как это происходило при движении платформы со статором электрогенератора. Обратите внимание на то, как подпрыгивает песок на шпалах в моменты проскальзывания колес по рельсам.

Ввиду большой массы, монтаж статоров электрогенераторов осуществлялся с применением обоих мостовых кранов:

На фотографии ниже приведен внутренний вид статора одного из электрогенераторов:

А вот так осуществлялся монтаж роторов электрогенераторов:

Выходное напряжение генераторов составляет порядка 20кВ. Выходной ток - тысячи ампер. Эта электроэнергия выводится из турбинного цеха и поступает на повышающие трансформаторы, находящиеся снаружи здания. Для передачи электроэнергии от электрогенераторов к повышающим трансформаторам используются вот такие электропроводы (ток течет по центральной алюминиевой трубе):

Для измерения тока в этих "проводах" используются вот такие трансформаторы тока (на третьей фотографии выше такой же трансформатор тока стоит вертикально):

На фотографии ниже представлен один из повышающих трансформаторов. Выходное напряжение - 220кВ. С их выходов электроэнергия подается в электросеть.

Кроме электрической энергии, ТЭЦ вырабатывает также тепловую энергию, используемую для отопления и горячего водоснабжения близлежащих районов. Для этого, в паровой турбине выполнены отборы пара, т. е. часть пара выводится из турбины не дойдя до конденсатора. Этот, еще достаточно горячий пар, поступает в сетевые подогреватели. Сетевой подогреватель - это теплообменник. По конструкции он очень похож на конденсатор паровой турбины. Отличие состоит в том, что в трубках течет не техническая вода, а сетевая вода. Сетевых подогревателей на энергоблоке два. Давайте снова рассмотрим фотографию с конденсаторами провой турбины. Прямоугольные емкости - конденсаторы, а "круглые" - этот как раз и есть сетевые подогреватели. Напоминаю, что все это расположено под паровой турбиной.

Подогретая в трубках сетевых подогревателей сетевая вода подается по подземным трубопроводам сетевой воды в тепловую сеть. Обогрев здания районов, расположенных вокруг ТЭЦ, и отдав им свое тепло, сетевая вода снова возвращается на станцию, чтобы снова быть подогретой в сетевых подогревателях и т. д.

Работа всего энергоблока контролируется АСУ ТП "Овация" американской корпорации "Эмерсон"

А вот как выглядит кабельный полуэтаж, находящийся под помещением АСУ ТП. По этим кабелям в АСУ ТП поступают сигналы от множества датчиков, а также уходят сигналы на исполнительные механизмы.

Спасибо за то, что посетили эту страницу !

Что такое и каковы же принципы работы ТЭС? Общее определение таких объектов звучит примерно следующим образом - это энергетические установки, которые занимаются переработкой природной энергии в электрическую. Для этих целей также используется топливо природного происхождения.

Принцип работы ТЭС. Краткое описание

На сегодняшний день наибольшее распространение получили именно На таких объектах сжигается которое выделяет тепловую энергию. Задача ТЭС - использовать эту энергию, чтобы получить электрическую.

Принцип работы ТЭС - это выработка не только но и производство тепловой энергии, которая также поставляется потребителям в виде горячей воды, к примеру. Кроме того, эти объекты энергетики вырабатывают около 76% всей электроэнергии. Такое широкое распространение обусловлено тем, что доступность органического топлива для работы станции довольно велико. Второй причиной стало то, что транспортировка топлива от места его добычи к самой станции - это довольно простая и налаженная операция. Принцип работы ТЭС построен так, что имеется возможность использовать отработавшее тепло рабочего тела для вторичной поставки его потребителю.

Разделение станций по типу

Стоит отметить, что тепловые станции могут делиться на типы в зависимости от того, какой именно они производят. Если принцип работы ТЭС заключается лишь в производстве электрической энергии (то есть тепловая энергия не поставляет потребителю), то ее называют конденсационной (КЭС).

Объекты, предназначенные для производства электрической энергии, для отпуска пара, а также поставки горячей воды потребителю, имеют вместо конденсационных турбин паровые. Также в таких элементах станции имеется промежуточный отбор пара или же устройство противодавления. Главным преимуществом и принципом работы ТЭС (ТЭЦ) такого типа стало то, что отработанный пар также используется в качестве источника тепла и поставляется потребителям. Таким образом, удается сократить потерю тепла и количество охлаждающей воды.

Основные принципы работы ТЭС

Прежде чем перейти к рассмотрению самого принципа работы, необходимо понять, о какой именно станции идет речь. Стандартное устройство таких объектов включает в себя такую систему, как промежуточный перегрев пара. Она необходима потому, что тепловая экономичность схемы с наличием промежуточного перегрева, будет выше, чем в системе, где она отсутствует. Если говорить простыми словами, принцип работы ТЭС, имеющей такую схему, будет гораздо эффективнее при одних и тех же начальных и конечных заданных параметрах, чем без нее. Из всего этого можно сделать вывод, что основа работы станции - это органическое топливо и нагретый воздух.

Схема работы

Принцип работы ТЭС построен следующим образом. Топливный материал, а также окислитель, роль которого чаще всего берет на себя подогретый воздух, непрерывным потоком подаются в топку котла. В роли топлива могут выступать такие вещества, как уголь, нефть, мазут, газ, сланцы, торф. Если говорить о наиболее распространенном топливе на территории Российской Федерации, то это угольная пыль. Далее принцип работы ТЭС строится таким образом, что тепло, которое образуется за счет сжигания топлива, нагревает воду, находящуюся в паровом котле. В результате нагрева происходит преобразование жидкости в насыщенный пар, который по пароотводу поступает в паровую турбину. Основное предназначение этого устройства на станции заключается в том, чтобы преобразовать энергию поступившего пара, в механическую.

Все элементы турбины, способные двигаться, тесно связываются с валом, вследствие чего они вращаются, как единый механизм. Чтобы заставить вращаться вал, в паровой турбине осуществляется передача кинетической энергии пара ротору.

Механическая часть работы станции

Устройство и принцип работы ТЭС в ее механической части связан с работой ротора. Пар, который поступает из турбины, имеет очень высокое давление и температуру. Из-за этого создается высокая внутренняя энергия пара, которая и поступает из котла в сопла турбины. Струи пара, проходя через сопло непрерывным потоком, с высокой скоростью, которая чаще всего даже выше звуковой, воздействуют на рабочие лопатки турбины. Эти элементы жестко закреплены на диске, который, в свою очередь, тесно связан с валом. В этот момент времени происходит преобразование механической энергии пара в механическую энергию турбин ротора. Если говорить точнее о принципе работы ТЭС, то механическое воздействие влияет на ротор турбогенератора. Это из-за того, что вал обычного ротора и генератора тесно связываются между собой. А далее происходит довольно известный, простой и понятный процесс преобразования механической энергии в электрическую в таком устройстве, как генератор.

Движение пара после ротора

После того как водяной пар проходит турбину, его давление и температура значительно опускаются, и он поступает в следующую часть станции - конденсатор. Внутри этого элемента происходит обратное превращение пара в жидкость. Для выполнения этой задачи внутри конденсатора имеется охлаждающая вода, которая поступает туда посредством труб, проходящих внутри стен устройства. После обратного преобразования пара в воду, она откачивается конденсатным насосом и поступает в следующий отсек - деаэратор. Также важно отметить, что откачиваемая вода, проходит сквозь регенеративные подогреватели.

Основная задача деаэратора - это удаление газов из поступающей воды. Одновременно с операцией очистки, осуществляется и подогрев жидкости так же, как и в регенеративных подогревателях. Для этой цели используется тепло пара, которое отбирается из того, что следует в турбину. Основное предназначение операции деаэрации состоит в том, чтобы понизить содержание кислорода и углекислого газа в жидкости до допустимых значений. Это помогает снизить скорость влияние коррозии на тракты, по которым идет поставка воды и пара.

Станции на угле

Наблюдается высокая зависимость принципа работы ТЭС от вида топлива, которое используется. С технологической точки зрения наиболее сложным в реализации веществом является уголь. Несмотря на это, сырье является основным источником питания на таких объектах, число которых примерно 30% от общей доли станций. К тому же планируется увеличивать количество таких объектов. Также стоит отметить, что количество функциональных отсеков, необходимых для работы станции, гораздо больше, чем у других видов.

Как работают ТЭС на угольном топливе

Для того чтобы станция работала непрерывно, по железнодорожным путям постоянно привозят уголь, который разгружается при помощи специальных разгрузочных устройств. Далее имеются такие элементы, как по которым разгруженный уголь подается на склад. Далее топливо поступает в дробильную установку. При необходимости есть возможность миновать процесс поставки угля на склад, и передавать его сразу к дробилкам с разгрузочных устройств. После прохождения этого этапа раздробленное сырье поступает в бункер сырого угля. Следующий шаг - это поставка материала через питатели в пылеугольные мельницы. Далее угольная пыль, используя пневматический способ транспортировки, подается в бункер угольной пыли. Проходя этот путь, вещество минует такие элементы, как сепаратор и циклон, а из бункера уже поступает через питатели непосредственно к горелкам. Воздух, проходящий сквозь циклон, засасывается мельничным вентилятором, после чего подается в топочную камеру котла.

Далее движение газа выглядит примерно следующим образом. Летучее вещество, образовавшееся в камере топочного котла, проходит последовательно такие устройства, как газоходы котельной установки, далее, если используется система промежуточного перегрева пара, газ подается в первичный и вторичный пароперегреватель. В этом отсеке, а также в водяном экономайзере газ отдает свое тепло на разогрев рабочего тела. Далее установлен элемент, называющийся воздухоперегревателем. Здесь тепловая энергия газа используется для подогрева поступающего воздуха. После прохождения всех этих элементов, летучее вещество переходит в золоуловитель, где очищается от золы. После этого дымовые насосы вытягивают газ наружу и выбрасывают его в атмосферу, использую для этого газовую трубу.

ТЭС и АЭС

Довольно часто возникает вопрос о том, что общего между тепловыми и и есть ли сходство в принципах работы ТЭС и АЭС.

Если говорить об их сходстве, то их несколько. Во-первых, обе они построены таким образом, что для своей работы используют природный ресурс, являющийся ископаемым и иссекаемым. Кроме этого, можно отметить, что оба объекта направлены на то, чтобы вырабатывать не только электрическую энергию, но и тепловую. Сходства в принципах работы также заключаются и в том, что ТЭС и АЭС имеют турбины и парогенераторы, участвующие в процессе работы. Далее имеются лишь некоторые отличие. К ним можно отнести то, что, к примеру, стоимость строительства и электроэнергии, полученной от ТЭС гораздо ниже, чем от АЭС. Но, с другой стороны, атомные станции не загрязняют атмосферу до тех пор, пока отходы утилизируются правильным образом и не происходит аварий. В то время как ТЭС из-за своего принципа работы постоянно выбрасывают в атмосферу вредные вещества.

Здесь кроется и главное отличие в работе АЭС и ТЭС. Если в тепловых объектах тепловая энергия от сжигания топлива передается чаще всего воде или преобразуется в пар, то на атомных станциях энергию берут от деления атомов урана. Полученная энергия расходится для нагрева самых разных веществ и вода здесь используется довольно редко. К тому же все вещества находятся в закрытых герметичных контурах.

Теплофикация

На некоторых ТЭС в их схемах может быть предусмотрена такая система, которая занимается теплофикацией самой электростанции, а также прилегающего поселка, если таковой имеется. К сетевым подогревателям этой установки, пар отбирается от турбины, а также имеется специальная линия для отвода конденсата. Вода подводится и отводится по специальной системе трубопровода. Та электрическая энергия, которая будет вырабатываться таким образом, отводится от электрического генератора и передается потребителю, проходя через повышающие трансформаторы.

Основное оборудование

Если говорить об основных элементах, эксплуатирующихся на тепловых электрических станциях, то это котельные, а также турбинные установки в паре с электрическим генератором и конденсатором. Основным отличием основного оборудования от дополнительного стало то, что оно имеет стандартные параметры по своей мощности, производительности, по параметрам пара, а также по напряжению и силе тока и т. д. Также можно отметить, что тип и количество основных элементов выбираются в зависимости от того, какую мощность необходимо получить от одной ТЭС, а также от режима ее эксплуатации. Анимация принципа работы ТЭС может помочь разобраться в этом вопросе более детально.

Современный мир требует огромного количества энергии (электрической и тепловой), которая производится на электростанциях различного типа.

Человек научился добывать энергию из нескольких источников (углеводородное топливо, ядерные ресурсы, падающая вода, ветер и т.д.) Однако и по сей день наиболее востребованными и эффективными остаются тепловые и атомные электростанции, о которых и пойдет речь.

Что такое АЭС?

Атомная электростанция (АЭС) – это объект, на котором для производства энергии используется реакция распада ядерного топлива.

Попытки использования управляемой (то есть контролируемой, прогнозируемой) ядерной реакции для выработки электроэнергии были предприняты советскими и американскими учеными одновременно – в 40-х годах прошлого века. В 50-х годах «мирный атом» стал реальностью, и во многих странах мира стали строить АЭС.

Центральным узлом любой АЭС является ядерная установка, в которой происходит реакция. При распаде радиоактивных веществ происходит выделение огромного количества тепла. Выделяемая тепловая энергия используется для нагрева теплоносителя (как правило, воды), который, в свою очередь, нагревает воду второго контура до перехода ее в пар. Горячий пар вращает турбины, благодаря чему происходит образование электроэнергии.

В мире не утихают споры о целесообразности использования атомной энергии для выработки электричества. Сторонники АЭС говорят об их высокой продуктивности, безопасности реакторов последнего поколения, а также о том, что такие электростанции не загрязняют окружающую среду. Противники утверждают, что АЭС потенциально чрезвычайно опасны, а их эксплуатация и, особенно, утилизация отработанного топлива сопряжены с огромными расходами.

Что такое ТЭС?

Наиболее традиционным и распространенным в мире видом электростанциЙ являются ТЭС. Тепловые электростанции (так расшифровывается данная аббревиатура) вырабатывают электроэнергию за счет сжигания углеводородного топлива – газа, угля, мазута.


Схема работы ТЭС выглядит следующим образом: при сгорании топлива образуется большое количество тепловой энергии, с помощью которой нагревается вода. Вода превращается в перегретый пар, который подается в турбогенератор. Вращаясь, турбины приводят в движение детали электрогенератора, образуется электрическая энергия.

На некоторых ТЭЦ фаза передачи тепла теплоносителю (воде) отсутствует. В них используются газотурбинные установки, в которых турбину вращают газы, полученные непосредственно при сжигании топлива.

Существенным преимуществом ТЭС считается доступность и относительная дешевизна топлива. Однако есть у тепловых станций и недостатки. Это, прежде всего, экологическая угроза окружающей среде. При сжигании топлива в атмосферу выбрасывается большое количество вредных веществ. Чтобы сделать ТЭС более безопасными, применяется ряд методов, в том числе: обогащение топлива, установка специальных фильтров, задерживающих вредные соединения, использование рециркуляции дымовых газов и т.п.

Что такое ТЭЦ?

Само название данного объекта напоминает предыдущее, и на самом деле, ТЭЦ, как и тепловые электростанции преобразуют тепловую энергию сжигаемого топлива. Но помимо электроэнергии теплоэлектроцентрали (так расшифровывается ТЭЦ) поставляют потребителям тепло. ТЭЦ особенно актуальны в холодных климатических зонах, где нужно обеспечить жилые дома и производственные здания теплом. Именно поэтому ТЭЦ так много в России, где традиционно используется центральное отопление и водоснабжение городов.

По принципу работы ТЭЦ относятся к конденсационным электростанциям, но в отличие от них, на теплоэлектроцентралях часть выработанной тепловой энергии идет на производство электричества, а другая часть – на нагрев теплоносителя, который и поступает к потребителю.


ТЭЦ более эффективна по сравнению с обычными ТЭС, поскольку позволяет использовать полученную энергию по максимуму. Ведь после вращения электрогенератора пар остается горячим, и эту энергию можно использовать для отопления.

Помимо тепловых, существуют атомные ТЭЦ, которые в перспективе должны сыграть ведущую роль в электро- и теплоснабжении северных городов.



Кадры