Советский самолет с вертикальным взлетом и посадкой. Самолеты с воздушными винтами. Почему вертикальные самолеты до сих пор не нашли широкого применения

Истребитель-бомбардировщик 5-го поколения F-35 B снабжён отдельным двигателем для вертикального взлёта и посадки.

По компоновочной схеме

История создания и развития СВВП

Разработка самолётов ВВП началась впервые в 1950-х годах , когда был достигнут соответствующий технический уровень турбореактивного и турбовинтового двигателестроения, что вызвало повсеместную заинтересованность в самолётах этого типа как среди потенциальных военных пользователей, так и в конструкторских бюро . Значительным импульсом в пользу развития СВВП послужило и широкое распространение в ВВС различных стран скоростных реактивных истребителей с высокими взлётными и посадочными скоростями. Такие боевые самолёты требовали длинных взлётно-посадочных полос с твёрдым покрытием: было очевидно, что в случае масштабных военных действий значительная часть этих аэродромов, особенно прифронтовых, будет быстро выведена из строя противником. Таким образом, военные заказчики были заинтересованы в самолётах, взлетающих и садящихся вертикально на любую небольшую площадку, то есть фактически независимых от аэродромов. В значительной мере благодаря такой заинтересованности представителей армии и флота ведущих мировых держав были созданы десятки опытных самолётов ВВП разных систем. Большинство конструкций было изготовлено в 1-2 экземплярах, которые, как правило, терпели аварии уже во время первых испытаний, и дальнейшие исследования над ними уже не проводились. Техническая комиссия НАТО , огласившая в июне 1961 года требования к истребителю-бомбардировщику вертикального взлёта и посадки, дала тем самым импульс развитию сверхзвуковых самолётов ВВП в западных странах. Предполагалось, что в 1960-х - 70-х годах странам НАТО потребуется около 5 тыс. таких самолётов, из которых первые войдут в эксплуатацию уже в 1967 году. Прогноз такого большого количества продукции вызвал появление шести проектов самолётов ВВП:

  • P.1150 английской фирмы «Хоукер-Сиддли » и западногерманской «Фокке-Вульф »;
  • VJ-101 западногерманского Южного Объединения «EWR-Зюд» («Бельков », «Хейнкель », «Мессершмитт »);
  • D-24 нидерландской фирмы «Фоккер » и американской «Рипаблик »;
  • G-95 итальянской фирмы «Фиат »;
  • Мираж III V французской фирмы «Дассо »;
  • F-104G в варианте ВВП американской фирмы «Локхид » совместно с английскими фирмами «Шорт» и «Роллс-Ройс ».

После того как все проекты были утверждены, должен был состояться конкурс , в котором из всех предложенных должны были выбрать лучший проект для запуска в серийное производство , однако, ещё до предоставления проектов на конкурс стало ясно, что он не состоится. Оказалось, что каждое государство имеет свою собственную, отличную от других концепцию будущего самолёта и не согласится на монополию одной фирмы или группы фирм. Например, английские военные поддержали не свои фирмы, а французский проект, ФРГ поддержала проект фирмы «Локхид» и так далее. Однако итоговой каплей стала Франция заявившая, что независимо от результатов конкурса будут работать над своим проектом самолёта «Мираж» III V.

Политические, технические и тактические проблемы повлияли на изменение концепции комиссии НАТО, которая разрабатывала новые требования. Началось создание многоцелевых самолётов. В этой ситуации только два из представленных проектов вышли из стадии предварительного проектирования: самолёт «Мираж» III V, финансируемый французским правительством, и самолёт VJ-101C, финансируемый западногерманской промышленностью. Эти самолёты были изготовлены соответственно в 3 и 2 экземплярах и подверглись испытаниям (4 из них погибли в катастрофах) до 1966 и 1971 годов. В 1971 году по заказу командования авиации ВМС США начались работы над третьим сверхзвуковым самолётом ВВП в западных странах - американским XFV-12A.

В итоге, лишь созданный и производимый СВВП Си Харриер активно и успешно применялся, в т.ч. во время Фолклендской войны . Современной разработкой СВВП является американский F-35 , истребитель пятого поколения. В вопросе разработки F-35 в качестве СВВП компания Локхед Мартин применила ряд технологических решений, реализованных в Як-141 .

Программа СВВП в СССР и России

Преимущества и недостатки СВВП

История развития самолётов ВВП показывает, что до настоящего времени они создавались почти исключительно для военной авиации . Преимущества СВВП для военного применения очевидны. Самолёт ВВП может базироваться на площадках, размеры которых ненамного превышают его габариты . Кроме способности вертикального взлёта и посадки, самолёты ВВП обладают дополнительными преимуществами, а именно возможностью зависания, разворота в этом положении и полёта в боковом направлении в зависимости от используемых двигательной установки и системы управления. По отношению к другим вертикально взлетающим летательным аппаратам- например вертолётам - СВВП обладают несравненно большими, вплоть до сверхзвуковых (Як-141) - скоростями и в целом преимуществами, свойственными летательным аппаратам с неподвижным крылом. Всё это привело к увлечению идеей вертикально взлетающего самолёта, своего рода «буму СВВП» в инженерно-конструкторской и в целом авиационной областях в 1960-1970-е годы.

Прогнозировалось широкое распространение этого типа машин, предлагалось множество проектов военных и гражданских, боевых, транспортных и пассажирских СВВП различных конструкций (типичный для 70-х годов пример проекта пассажирского лайнера СВВП - Hawker Siddeley HS-141).

Однако, недостатки СВВП также оказались значительными. Пилотирование этого типа машин весьма сложно для лётчика и требует от него высочайшей квалификации в технике пилотирования. Особенно это сказывается в полёте на режимах висения и переходных - в моменты перехода из висения в горизонтальный полёт и обратно. Фактически, пилот реактивного СВВП должен перенести подъёмную силу, и, соответственно, вес машины - с крыла на вертикальные газовые струи тяги или наоборот.

Такая особенность техники пилотирования ставит сложные задачи перед пилотом СВВП. Кроме того, в режиме висения и переходных режимах СВВП в целом неустойчивы, подвержены боковому скольжению, большую опасность в эти моменты представляет возможный отказ подъёмных двигателей. Такой отказ нередко служил причиной аварий серийных и экспериментальных СВВП. Также к недостаткам можно отнести значительно меньшую в сравнении с самолётами обычной схемы грузоподъёмность и дальность полёта СВВП, большой расход топлива на вертикальных режимах полёта, общую сложность и дороговизну конструкции СВВП, разрушение покрытий взлётно-посадочных площадок горячим газовым выхлопом двигателей.

Указанные факторы, а также резкое повышение на мировом рынке цен на нефть (и, соответственно, авиационное топливо) в 70-годах 20-го века привели к практическому прекращению разработок в области пассажирских и транспортных реактивных СВВП.

Из множества предложенных проектов реактивных транспортных СВВП практически был завершён и испытан лишь один [ ] самолёт Dornier Do 31 , однако и эта машина серийно не строилась. Исходя из всего вышеизложенного, перспективы широких разработок и массового применения реактивных СВВП очень сомнительны. В то же время, существует современная конструкторская тенденция к отходу от традиционной реактивной схемы в пользу СВВП с винтомоторной группой (чаще - конвертопланов): в частности, к таким машинам относится производящийся серийно в настоящее время Bell V-22 Osprey и разрабатываемый на его основе

0

Конструирование самолетов с вертикальным взлетом и посадкой сопряжено с большими трудностями, связанными с необходимостью создания легких двигателей, управляемостью на околонулевых скоростях и др.

В настоящее время известно много проектов схем самолетов вертикального взлета и посадки, многие из которых уже воплощены в реальные аппараты.

Самолеты с воздушными винтами

Одним из решений проблемы вертикального взлета и посадки является создание самолета, у которого подъемная сила при взлете и посадке создается поворотом оси вращения винтов, а в горизонтальном полете - крылом. Поворот оси вращения винтов может быть достигнут поворотом двигателя или крыла. Крыло такого самолета (рис. 160) выполняется по многолонжеронной схеме (минимум два лонжерона) и крепится к фюзеляжу на шарнирах. Механизм поворота крыла чаще всего представляет винтовой домкрат с синхронизированным вращением, обеспечивающий изменение угла установки крыла на угол больше 90°.

Крыло снабжается по всему размаху многощелевыми закрылками. На участках, где крыло не обдувается воздушным потоком от винта, или там, где скорости обдувания невелики (в центральной части крыла), устанавливаются предкрылки, способствующие устранению срыва потока при больших углах атаки. Вертикальное оперение отличается относительно большими размерами (для повышения путевой устойчивости при малых скоростях полета) и оснащается рулем направления. Стабилизатор такого самолета обычно управляемый. Углы установки стабилизатора могут изменяться в больших пределах, обеспечивая переход самолета от вертикального взлета к горизонтальному полету и обратно. Основание киля переходит в вынесенную назад хвостовую балку, на которой в горизонтальной плоскости крепится хвостовой винт небольшого диаметра, изменяемого шага, обеспечивающий продольное управление на режиме висения и переходных режимах полета.

Силовая установка состоит из нескольких мощных турбовинтовых двигателей, отличающихся небольшими размерами и малым удельным весом порядка 0,114 кГ/л. с., что очень важно для летательного аппарата вертикального взлета и посадки любой схемы, так как у таких аппаратов при вертикальном взлете тяга должна быть больше веса. Кроме преодоления веса, тяга должна преодолевать аэродинамическое сопротивление и создавать ускорение для разгона самолета до такой скорости, при которой подъемная сила крыла будет полностью компенсировать вес самолета, а рулевые аэродинамические поверхности будут достаточно эффективны.

Серьезный конструктивный недостаток самолетов вертикального взлета и посадки с воздушными винтами заключается в том, что обеспечение безопасности полета и надежной управляемости самолета при вертикальном взлете и на переходных режимах полета достигается ценой утяжеления и усложнения конструкции за счет применения механизма поворота крыла и трансмиссии, синхронизирующей вращение воздушных винтов.

Сложной является также система управления самолетом. Управление во время взлета и посадки и в крейсерском полете по трем осям осуществляется с помощью обычных аэродинамических поверхностей управления, но на режиме висения и. переходных режимах до и после крейсерского полета применяются иные методы управления.

Во время вертикального набора высоты продольное управление осуществляется с помощью горизонтального рулевого винта (с изменяемым шагом), расположенного за килем (рис. 160, б), путевое управление - дифференциальным отклонением концевых секций закрылков, обдуваемых струей от воздушных винтов, а поперечное управление - дифференциальным изменением шага крайних воздушных винтов.






На переходном режиме осуществляется постепенный переход к управлению с помощью обычных поверхностей; для этого используется смеситель команд, работа которого программируется в зависимости от угла поворота крыла. В систему управления включен механизм стабилизации.

Улучшение характеристик самолетов вертикального взлета и посадки с воздушными винтами в настоящее время возможен за счет того, что воздушный винт заключают в кольцевой канал (короткую трубу соответствующего диаметра). Такой винт развивает тягу на 15-20% больше, чем тяга винта без «ограждения». Объясняется это тем, что стенки канала препятствуют перетеканию сжатого воздуха с нижних поверхностей винта на верхние, где давление понижено, и исключают рассеивание потока от винта в стороны. Кроме того, при подсасывании воздуха винтом над кольцевым каналом создается область пониженного давления, а так как винт отбрасывает вниз поток сжатого воздуха, разность давлений на верхнем и нижнем срезе кольца канала приводит к образованию дополнительной подъемной силы. На рис. 161, а представлена схема самолета вертикального взлета и посадки с воздушными винтами, установленными в кольцевых каналах. Самолет выполнен по схеме тандем с четырьмя винтами, приводимыми в движение общей трансмиссией.

Управление по трем осям в крейсерском и вертикальном полете (рис. 161, б, в, г) производится в основном путем дифференциального изменения шага воздушных винтов и отклонения закрылков, расположенных горизонтально в струях, отбрасываемых винтами за каналами.

Следует отметить, что самолеты вертикального взлета и посадки с воздушными винтами способны развивать скорость 600- 800 км/ч. Достижение более высоких дозвуковых, а тем более сверхзвуковых скоростей полета возможно лишь при использовании реактивных двигателей.

Самолеты с реактивной тягой

Известно много схем самолетов вертикального взлета и посадки с реактивной тягой, однако их можно достаточно строго разделить на три основные группы по типу силовой установки: самолеты с единой силовой установкой, с составной силовой установкой и с силовой установкой с агрегатами усиления тяги.

Самолеты с единой силовой установкой, у которой один и тот же двигатель создает вертикальную и горизонтальную тягу (рис. 162), теоретически могут летать со скоростями, превышающими скорость звука в несколько раз. Серьезным недостатком такого самолета является то, что отказ двигателя на взлете или при посадке грозит катастрофой.


Самолет с составной силовой установкой может совершать полет также со сверхзвуковыми скоростями. Его силовая установка состоит из двигателей, предназначенных для вертикального взлета и посадки (подъемные), и двигателей для горизонтального полета (маршевые), рис. 163.

Подъемные двигатели имеют вертикально расположенную ось, а маршевые - горизонтально расположенную. Отказ одного или двух подъемных двигателей на взлете позволяет продолжать вертикальный взлет и посадку. В качестве маршевых двигателей могут использоваться ТРД, ДТРД. Маршевые двигатели на взлете могут также участвовать в создании вертикальной тяги. Отклонение вектора тяги производится или поворотными соплами, или поворотом двигателя вместе с гондолой.

На самолетах ВВП с реактивными двигателями устойчивость и управляемость на режимах взлета, посадки, висения и переходных режимах, когда аэродинамические силы отсутствуют или малы по величине, обеспечивается управляющими устройствами газодинамического типа. По принципу работы они разделяются на три класса: с отбором сжатого воздуха или горячих газов от силовой установки, с использованием величины тяги движителей и с применением устройств отклонения вектора тяги.


Управляющие устройства с отбором сжатого воздуха или газов наиболее просты и надежны. Пример компоновки управляющего устройства с отбором сжатого воздуха от подъемных двигателей представлен на рис. 164.

Самолеты ВВП, оснащенные силовой установкой с агрегатами усиления тяги, могут иметь турбовентиляторные агрегаты (рис. 165) или газовые эжекторы (рис. 166), которые и создают необходимую вертикальную тягу на взлете. Силовые установки этих самолетов могут быть созданы на базе ТРД и ДТРД.

Силовая установка самолета с агрегатами усиления тяги, представленная на рис. 165, состоит из двух ТРД, установленных в фюзеляже и создающих горизонтальную тягу. При вертикальном взлете и посадке ТРД используются в качестве газогенераторов для привода во вращение двух турбин с вентиляторами, размещенных в крыле, и одной турбины с вентилятором в носовой части фюзеляжа. Передний вентилятор используется только для продольного управления.

Управление самолетом на вертикальных режимах обеспечивается вентиляторами, а в горизонтальном полете - аэродинамическими рулями. Самолет с эжекторной силовой установкой, представленный на рис. 166, имеет силовую установку из двух ТРД. Для создания вертикальной тяги поток газов направляется в эжекторное устройство, расположенное в центральной части фюзеляжа. Устройство имеет два центральных воздушных канала, из которых воздух направляется в поперечные каналы с щелевыми соплами на концах.




Каждый ТРД соединен с одним центральным каналом и половиной поперечных каналов с соплами, чтобы при выключении или выходе из строя одного ТРД эжекторное устройство продолжало работать. Сопла выходят в эжекторные камеры, которые закрываются створками на верхней и нижней поверхностях фюзеляжа. При работе эжекторной установки вытекающие из сопла газы эжектируют воздух, объем которого в 5,5-6 раз больше объема газов, что на 30% превышает тягу ТРД.

Вытекающие из эжекторных камер газы имеют небольшую скорость и температуру. Это позволяет эксплуатировать самолет с взлетно-посадочных площадок без специального покрытия, кроме того, эжекторное устройство понижает уровень шума ТРД. Управление самолетом на крейсерском режиме осуществляется обычными аэродинамическими поверхностями, а на режиме взлета, посадки и переходных режимах - системой струйных рулей, обеспечивающих устойчивость и управляемость самолету.

Силовые установки с усилением вектора тяги обладают несколькими очень серьезными недостатками. Так, силовая установка с турбовентиляторным агрегатом требует больших объемов для размещения вентиляторов, что затрудняет создание крыла с тонким профилем, нормально работающего в сверхзвуковом потоке. Еще больших объемов требует эжекторная силовая установка.



Обычно при таких схемах возникают трудности с размещением топлива, что ограничивает дальность полета самолета.

При рассмотрении схем самолетов ВВП может сложиться ошибочное мнение о том, что возможность вертикального взлета должна окупаться уменьшением поднимаемого самолетом полезного груза. Даже приближенные расчеты подтверждают вывод о том, что вертикально взлетающий самолет, обладающий большой скоростью полета, может быть создан без значительных потерь в полезной нагрузке или дальности, если с самого начала проектирования самолета в основу его положить требования вертикального взлета и посадки.

На рис. 167 представлены результаты анализа весов самолетов обычной схемы (нормального взлета) и ВВП. Сравниваются самолеты равного взлетного веса, имеющие одинаковую скорость крейсерского полета, высоту, дальность и поднимающие одинаковую полезную нагрузку. Из диаграммы рис. 167 видно, но самолет ВВП (с 12 подъемными двигателями) имеет силовую установку тяжелее обычного самолета примерно на 6% взлетного веса самолета нормального взлета.



Кроме того, гондолы подъемных двигателей еще на 3% от взлетного веса увеличивают вес конструкции самолета ВВП. Расход топлива на взлет и посадку, включая движение по земле, больше, чем у обычного самолета, на 1,5%, а вес дополнительного оборудования самолета ВВП на 1%.

Этот неизбежный для вертикально взлетающего самолета дополнительный вес, равный примерно 11,5% взлетного веса, может быть скомпенсирован уменьшением веса других элементов его конструкции.

Так, для самолета ВВП крыло выполняется меньшего размера по сравнению с самолетом обычной схемы. К тому же отпадает необходимость в применении механизации крыла, и это уменьшает вес примерно на 4,4%.

Дальнейшей экономии веса самолета ВВП можно ожидать от уменьшения веса шасси и хвостового оперения. Вес шасси самолета ВВП, рассчитанного на максимальную скорость снижения 3 м/сек, может быть уменьшен на 2% взлетного веса по сравнению с самолетом обычной схемы.

Таким образом, весовой баланс самолета ВВП показывает, что вес конструкции самолета ВВП больше веса обычного самолета приблизительно на 4,5% максимального взлетного веса самолета обычной схемы.

Однако обычный самолет должен иметь значительный резерв топлива для полетов в зоне ожидания и для поиска запасного аэродрома в плохую погоду. Этот резерв топлива для вертикально взлетающего самолета может быть значительно уменьшен, так как он не нуждается во взлетно-посадочной полосе и может приземляться практически па любой площадке, размеры которой могут быть незначительны.

Из вышесказанного следует, что самолет ВВП, имеющий взлетный вес такой же, как и у самолета обычной схемы, может нести ту же полезную нагрузку и совершать полет с той же скоростью и на ту же дальность.

Используемая литература: "Основы авиации" авторы: Г.А. Никитин, Е.А. Баканов

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

Как известно, боевой самолет наиболее уязвим на земле и на взлете, а дорогостоящие взлетно-посадочные полосы -едва ли не главная статья расходов современных ВВС и первоочередная цель для вражеской авиации. Поэтому авиаконструкторы десятилетиями бились над проблемой вертикального взлета, но решить ее удалось лишь освоив технологию управления вектором тяги, на основе которой созданы первые серийно выпускавшиеся СВВП -британский «Харриер» и советский Як-38. Очень похожие внешне, эти самолеты вертикального взлета и посадки имели совершенно разную судьбу. Пройдя длинную эволюцию и превратившись из неуклюжего «прыгуна» в эффективную боевую машину, «Харриер» дебютировал во время Фолклендского конфликта, принимал участие во многих локальных войнах, от Персидского залива и Афганистана до Балкан, и остается в строю до сих пор. В отличие от Як-38, который поднялся в воздух позже своего западного визави, но был снят с вооружения уже к началу 1990-х гг. Почему его служба оказалась столь недолгой? Из-за чего эта технология, представлявшаяся столь перспективной, так и не смогла потеснить традиционные машины даже в палубной авиации? И есть ли у самолетов вертикального взлета будущее - или они тупиковая ветвь в развитии авиапрома?

С тех самых пор, когда человек начал проектировать и строить аэропланы, способные относительно безопасно и быстро перемещаться в пространстве, его преследовало одно существенное ограничение: самолет требует довольно значительного места на земле для взлета и посадки. Чем больше и тяжелее летающая машина, чем больше людей и груза способна она поднять, тем больше требуется этого места. По мере создания все более современных самолетов возрастали требования к длине и качеству взлетно-посадочных полос, накладывая существенные ограничения на область практического применения авиации. Особенно острой эта проблема представлялась военным - ведь бомбардировка взлетно-посадочных полос авиацией противника могла легко парализовать действия собственных самолетов. Но человек - существо упрямое и находчивое, и с самого начала эпохи летательных аппаратов тяжелее воздуха он пытался заставить их взлететь если не вертикально, то с возможно более коротким разбегом.

Попытки создать геликоптер, предпринимаемые с самого начала XX века (в том числе и Игорем Сикорским ещё в киевский период его деятельности), поначалу оказались безуспешными - этим аппаратам элементарно недоставало двигателей с достаточно высокой удельной мощностью, ждали своего решения и целый ряд других технических проблем. Более перспективным казался автожир, использующий принцип авторотации несущего винта и тягу обычного самолетного двигателя. Такой аппарат вертикально взлететь не мог, но разбег, и особенно - пробег сокращались радикально. Созданные под руководством Хуана де ла Сиервы автожиры в 20-е - 30-е гг. завоевали значительную популярность, они строились по лицензии в раалнчных странах, а военные вовсю экспериментировали с применением новой «игрушки» в своих целях. Вскоре. однако, оказалось, что эти машины тоже отнюдь не идеальны - вертикально взлететь или зависнуть в воздухе они не могли, а полезная нагрузка автожиров была незначительной. И хотя во время Второй мировой войны такие аппараты даже участвовали в боях (например, советский автожир-корректировщик А-7-ЗА или немецкий безмоторный автожир Fa 330, применявшийся на подводных лодках), это участие было лишь эпизодическим и никоим образом не угрожало монополии самолетов.

В 40-е годы на новой технической основе начинается бурный прогресс вертолетостроения. В течение последующих десятилетий геликоптеры заняли очень важное место, как в военной, так и в гражданской авиации. Вертолет стаз очень удачной попыткой создания летательного аппарата - помимо вертикального взлета и посадки, он может зависать в воздухе. Он оказался идеальным для многих задач, которые были не по плечу самолетам. Однако и вертолет имеет свои ограничения. Да, он способен взлетать и садиться с площадок минимальных размеров, летать практически в произвольных плоскостях и направлениях. Но он не летает ни так быстро, как самолет, ни так высоко, ни так далеко. Вертолет неспособен приблизиться к скорости звука - не говоря уж о том. чтобы превзойти её.

Вскоре оказалось, что и дальше ощущается потребность в летательном аппарате, способном хотя бы частично совмещать характеристики вертолета (вертикальный взлет и посадка, свободное управляемое висение) и классического самолета (высокая скорость, большой потолок и дальность полета). И если гражданские эксплуатанты без такого аппарата могли ешё обойтись, то военные были крайне заинтересованы в создании боевого самолета вертикального взлета и посадки. Ведь, хотя вооруженные вертолеты стали весьма грозным оружием над полем боя, они не могли заменить многоцелевые истребители-бомбардировщики ни в воздушном бою, ни при изоляции района боевых действий. Обычный же истребитель, с успехом справлявшийся с этими задачами, требовал взлетно-посадочной полосы - хотя бы в виде палубы авианосца.

Проблема создания боевого самолета вертикального взлета представлялась неразрешимой - в чем могли убедиться, например, американцы, попытавшись создать винтовой истребитель вертикального взлета «Конвэр» XFY-1 «Пого», странную машину, взлетавшую из положения «стоя на хвосте». Однако разрешение проблемы лежало в совершенно иной плоскости, и путь к нему открыла мысль - применить на практике известное в принципе явление управления вектором тяги. Как и каждое новое изобретение в авиации, путь к внедрению его был труден, извилист и, увы, щедро окроплен кровью пилотов-испыта-телей. Но, в конце концов, концепция управления вектором тяги оказалась вполне жизнеспособной, и все серийные конструкции боевых самолетов вертикального взлета и посадки имеют в своей основе именно её: и британский (позже ставший американо-британским) «Харриер», и советский Як-38, и только внедряемая в производство модификация американского «Лайтнинга» II - F-35B. Эти машины разнятся не столько самими конструкторско-техническими решениями, сколько способом подхода к проблеме и её решению. Рассмотрим же подробнее то явление, которое называют управлением вектором тяги (УВТ), или же английской аббревиатурой VTC (Vector Trust Control).

Управление вектором тяги

Если попытаться дать самое простое определение термина, вынесенного в заглавие раздела, то получим примерно следующее: управление вектором тяги - это способность воздушного судна отклонять тягу, создаваемую его силовой установкой, от продольной оси самолета. Понятие это применяется, прежде всего, для воздушных судов с реактивным приводом (не только самолетов, но и ракет), однако может применяться и для самолетов с винтовым приводом (поршневым или турбовинтовым - например, MV-22 «Оспри»).

С практической точки зрения управление вектором тяги имеет две основные области применения:

Увеличение возможностей самолета в горизонтальном полете (прежде всего, в плане управляемости и маневренности);
значительное сокращение разбега и пробега либо полное исключение этих этапов полета - то есть, вертикальный взлет и посадка.

Конструкторские подходы в двух указанных случаях весьма разнятся. Если в первом отклонение вектора тяги от оси самолета становит от нескольких до нескольких десятков градусов (как правило, в пределах 25-35 градусов), то для второго, особенно, если силовая установка должна обеспечить самолету вертикальный взлет и посадку, необходимо направлять тягу вниз, то есть, при горизонтально установленном двигателе отклонение вектора тяги должно составлять около 90 градусов (дело в том, что угол отклонения тяги из-за особенностей термодинамики не должен или не может равняться точно 90 градусов от горизонтали).

Остановимся чуть подробнее на первом случае, обозначаемом в английском языке как Vectoring in Forward Flight (VIFF), то есть, управление вектором тяги в горизонтальном полете. Целью его (в отношении боевых самолетов, прежде всего многоцелевых истребителей) является улучшение маневренности самолета и снижение радиолокационной заметности, что в сумме ведет к повышению его выживаемости на поле боя. Кроме того, значительно сокращается длина разбега и пробега. И хотя это может показаться странным, но отклонение вектора тяги на 20-30 градусов является с технологической точки зрения решением гораздо более поздним и сложным для реализации, чем отклонение на величину, близкую к 90 градусам. Такое решение применяется на практике лишь в боевых самолетах самых последних поколений, хотя и сулит бесспорные преимущества. Согласованная работа аэродинамических поверхностей управления с изменением вектора тяги существенно усиливает действие аэродинамических рулей. Самолет становится способным к более резким маневрам - в принципе, единственным ограничением становится стойкость организма пилота и конструкции летательного аппарата к перегрузкам. Кроме того, при маневрировании с отклонением вектора тяги самолет расходует меньше топлива, чем при маневрировании с применением только аэродинамических рулей - а значит, увеличивается дальность полета. Уменьшение длины разбега и пробега облегчает эксплуатацию с коротких ВПП (например, поврежденных в ходе боевых действий), полевых аэродромов или авианосцев.

Применение управления вектором тяги в горизонтальном полете может существенно повлиять и на конструкцию планера. Оно открывает путь к развитию самолетов-бесхвосток, лишенных не только горизонтального, но и вертикального оперения. Отсутствие оперения уменьшает аэродинамическое сопротивление и массу планера (то есть, снова уменьшается расход топлива и увеличивается дальность полета). Кроме того, уменьшается эффективная площадь рассеивания самолета, придавая ему черты «стеле».

Управление вектором тяги имеет и свои недостатки, о которых не стоит забывать, по крайней мере, на существующем уровне развития авиационной техники. К наиболее существенным из них относятся сложная конструкция и достаточно большая масса устройств управления вектором тяги.

На нынешнем этапе развития конструкции боевых самолетов приоритетным является применение управления вектором тяги в целях обеспечения вертикального взлета и посадки либо значительного сокращения разбега (самолет с управлением вектором тяги может не иметь возможности вертикального старта, или же быть способным взлетать вертикально лишь до определенного показателя взлетного веса) при сохранении возможности вертикальной посадки. Именно эти характеристики реализованы в «Харриере» и Як-38.

Итак, вернемся к «вертикалкам». Применение в таких самолетах управления вектором тяги имеет целью существенное изменение хода старта и посадки самолета. Оно существенно сокращает эти две фазы полета по сравнению с самолетами с классическими силовыми установками (реактивными либо винтовыми). В фазе старта это касается, в первую очередь, разбега, то есть, говоря попросту, пути, который должен преодолеть самолет до того момента, когда его крылья создадут достаточную несущую силу, способную оторвать самолет от земли и поднять его в воздух. В фазе посадки речь идет о пробеге, то есть, пути, который преодолевает самолет от момента касания колесами земли до остановки. Разбег и пробег определяют требования не только к длине, но и к качеству ВПП - ведь если самолет будет двигаться на большой скорости по достаточно длинной, но неровной или поврежденной полосе, то он рискует получить серьезные повреждения и даже разбиться.

Если же самолет будет оборудован устройствами управления вектором тяги в достаточно широком диапазоне, то взлет и посадка выглядят совершенно иначе. Такие самолеты в зависимости от их возможностей подразделяют на несколько групп:

VTOL (Vertical Take off and Landing) - самолеты, способные осуществлять вертикальный взлет и посадку (СВ-ВП);
STOL (Short Take off and Landing) - самолеты с коротким взлетом и посадкой (СКВП);
VSTOL (Vertical Short Take off and Landing) - самолеты, способные осуществлять как вертикальный, так и короткий взлет и посадку (СКВВП);
STOVL (Short Take off and Vertical Landing) - самолеты, мощность силовой установки которых не позволяет взлетать вертикально, но допускает вертикальную посадку (после снижения массы путем выработки топлива и сброса внешней подвески).

Самые первые исследования устойчивость аппарата вертикального взлета показывали, что при старте и посадке вектор несущей силы должен проходить через центр тяжести самолета, а её величина должна по крайней мере на 20% превышать массу планера.

Несмотря на волну критики примененной в самолете концепции вертикального взлета, о необходимости возобновления производства машин такого класса в последнее время все чаще говорят и в России 15 Декабрь 2017, 11:33

Одна из самых дорогих "игрушек" Пентагона - истребитель-бомбардировщик F-35B - на этой неделе принял участие в совместных американо-японских учениях, направленных на охлаждение ракетно-ядерного пыла КНДР. Несмотря на волну критики примененной в самолете концепции вертикального взлета, о необходимости возобновления производства машин такого класса в последнее время все чаще говорят и в России. В частности, о планах строительства самолетов с вертикальным взлетом и посадкой (СВВП) недавно сообщил замминистра обороны Юрий Борисов. О том, зачем России нужен такой самолет и хватит ли у авиапрома сил для его создания.

Самым массовым отечественным боевым самолетом с вертикальным взлетом и посадкой стал Як-38, который приняли на вооружение в августе 1977 года. Машина заслужила неоднозначную репутацию среди авиаторов - из 231 построенного борта в катастрофах и авиационных инцидентах разбилось 49.

Основным эксплуатантом самолета стал Военно-морской флот - Як-38 базировались на авианесущих крейсерах проекта 1143 "Киев", "Минск", "Новороссийск" и "Баку". Как вспоминают ветераны палубной авиации, высокая аварийность вынуждала командование резко сокращать количество учебных полетов, а налет пилотов Як-38 составлял символическую по тем временам цифру - не более 40 часов в год. В итоге в полках морской авиации не было ни одного летчика первого класса, лишь единицы обладали вторым классом летной квалификации.

Боевые характеристики тоже были сомнительными - из-за отсутствия бортовой радиолокационной станции он лишь условно мог вести воздушные бои. Использование Як-38 в качестве чистого штурмовика выглядело неэффективным, поскольку боевой радиус при вертикальном взлете составлял всего 195 километров, а в жарком климате - и того меньше.


Сверхзвуковой многоцелевой истребитель-перехватчик вертикального взлета и посадки Як-141

На замену "трудному ребенку" должна была прийти более совершенная машина Як-141, однако после развала СССР интерес к ней пропал. Как видно, отечественный опыт создания и эксплуатации СВВП не назовешь удачным. Почему же тема самолетов вертикального взлета и посадки стала вновь актуальной?

Флотский характер

"Такая машина жизненно необходима не только Военно-морскому флоту, но и Военно-воздушным силам, - рассказал РИА Новости военный эксперт, капитан первого ранга Константин Сивков. - Главная проблема современной авиации заключается в том, что реактивному истребителю нужна хорошая взлетно-посадочная полоса, а таких аэродромов очень немного, уничтожить их первым ударом довольно просто. Самолеты же вертикального взлета в угрожаемый период можно рассредоточить хоть по лесным полянам. Такая система применения боевой авиации будет обладать исключительной боевой устойчивостью".

Впрочем, целесообразность использования СВВП в сухопутном варианте не всем видится обоснованной. Одна из главных проблем заключается в том, что при вертикальном взлете самолет расходует много топлива, что сильно ограничивает его боевой радиус. Россия же - страна большая, поэтому для достижения господства в воздухе у истребительной авиации должны быть "длинные руки".

"Выполнение боевых задач истребительной авиации в условиях частично разрушенной аэродромной инфраструктуры можно обеспечить за счет укороченного взлета обычных машин с участка полосы длиной менее 500 метров, - считает исполнительный директор агентства "Авиапорт" Олег Пантелеев. - Другой вопрос, что у России есть планы на строительство авианосного флота, здесь применение вертикально взлетающих самолетов будет наиболее рационально. Это необязательно могут быть авианосцы, это могут быть и авианесущие крейсеры с наименьшими стоимостными параметрами".


Истребитель F-35

К слову, F-35B сегодня является сугубо морской машиной, главный ее заказчик - корпус морской пехоты США (самолет будет базироваться на десантных кораблях). Британские F-35B составят основу авиакрыла новейшего авианосца Queen Elizabeth, который ввели в строй совсем недавно.

В то же время, по мнению Константина Сивкова, для начала работ по созданию российского аналога F-35B российским КБ не обязательно дожидаться новых авианосных кораблей. "Самолеты с вертикальным взлетом и посадкой могут базироваться не только на авианосцах. Например, танкер оборудуется рампой и становится своего рода авианосцем, в советское время у нас были такие проекты. Кроме того, СВВП могут использоваться с боевых кораблей, способных принимать вертолеты, например с фрегатов", - рассказал наш собеседник.

Сможем, если захотим

Между тем очевидно, что создание российского вертикально взлетающего самолета потребует внушительных ресурсов и средств. Стоимость разработки F-35B и его собратьев с горизонтальным взлетом, по различным оценкам, уже достигла 1,3 миллиарда долларов, а в создании машины участвовали сразу несколько государств.

Одна из самых дорогих «игрушек» Пентагона - истребитель-бомбардировщик F-35B - на этой неделе принял участие в совместных американо-японских учениях, направленных на охлаждение ракетно-ядерного пыла КНДР.

Несмотря на волну критики, о необходимости возобновления производства машин такого класса в последнее время все чаще говорят и в России. В частности, о планах строительства самолетов с вертикальным взлетом и посадкой (СВВП) недавно сообщил замминистра обороны Юрий Борисов.

О том, зачем России нужен такой самолет и хватит ли у авиапрома сил для его создания, - в материале РИА Новости.

Самым массовым отечественным боевым самолетом с вертикальным взлетом и посадкой стал Як-38, который приняли на вооружение в августе 1977 года. Машина заслужила неоднозначную репутацию среди авиаторов - из 231 построенного борта в катастрофах и авиационных инцидентах разбилось 49.

Основным эксплуатантом самолета стал Военно-морской флот - Як-38 базировались на авианесущих крейсерах проекта 1143 «Киев», «Минск», «Новороссийск» и «Баку».

Как вспоминают ветераны палубной авиации, высокая аварийность вынуждала командование резко сокращать количество учебных полетов, а налет пилотов Як-38 составлял символическую по тем временам цифру - не более 40 часов в год.

В итоге в полках морской авиации не было ни одного летчика первого класса, лишь единицы обладали вторым классом летной квалификации.

Боевые характеристики тоже были сомнительными - из-за отсутствия бортовой радиолокационной станции он лишь условно мог вести воздушные бои.

Использование Як-38 в качестве чистого штурмовика выглядело неэффективным, поскольку боевой радиус при вертикальном взлете составлял всего 195 километров, а в жарком климате - и того меньше.

Сверхзвуковой многоцелевой истребитель-перехватчик вертикального взлета и посадки Як-141

На замену «трудному ребенку» должна была прийти более совершенная машина Як-141, однако после развала СССР интерес к ней пропал.

Как видно, отечественный опыт создания и эксплуатации СВВП не назовешь удачным. Почему же тема самолетов вертикального взлета и посадки стала вновь актуальной?

Флотский характер

«Такая машина жизненно необходима не только Военно-морскому флоту, но и Военно-воздушным силам, - рассказал РИА Новости военный эксперт, капитан первого ранга Константин Сивков.

Главная проблема современной авиации заключается в том, что реактивному истребителю нужна хорошая взлетно-посадочная полоса, а таких аэродромов очень немного, уничтожить их первым ударом довольно просто.

Самолеты же вертикального взлета в угрожаемый период можно рассредоточить хоть по лесным полянам. Такая система применения боевой авиации будет обладать исключительной боевой устойчивостью».

Впрочем, целесообразность использования СВВП в сухопутном варианте не всем видится обоснованной. Одна из главных проблем заключается в том, что при вертикальном взлете самолет расходует много топлива, что сильно ограничивает его боевой радиус.

Россия же - страна большая, поэтому для достижения господства в воздухе у истребительной авиации должны быть «длинные руки».

«Выполнение боевых задач истребительной авиации в условиях частично разрушенной аэродромной инфраструктуры можно обеспечить за счет укороченного взлета обычных машин с участка полосы длиной менее 500 метров, - считает исполнительный директор агентства „Авиапорт” Олег Пантелеев.

Другой вопрос, что у России есть планы на строительство авианосного флота, поэтому применение вертикально взлетающих самолетов будет наиболее рационально. Это необязательно могут быть авианосцы, это могут быть и авианесущие крейсеры с наименьшими стоимостными параметрами».


Истребитель F-35

К слову, F-35B сегодня является сугубо морской машиной, главный ее заказчик - корпус морской пехоты США (самолет будет базироваться на десантных кораблях). Британские F-35B составят основу авиакрыла новейшего авианосца Queen Elizabeth, который ввели в строй совсем недавно.

В то же время, по мнению Константина Сивкова, для начала работ по созданию российского аналога F-35B российским КБ не обязательно дожидаться новых авианосных кораблей.

«Самолеты с вертикальным взлетом и посадкой могут базироваться не только на авианосцах. Например, танкер оборудуется рампой и становится своего рода авианосцем, в советское время у нас были такие проекты.

Кроме того, СВВП могут использоваться с боевых кораблей, способных принимать вертолеты, например с фрегатов», - рассказал наш собеседник.

Сможем, если захотим

Между тем очевидно, что создание российского вертикально взлетающего самолета потребует внушительных ресурсов и средств. Стоимость разработки F-35B и его собратьев с горизонтальным взлетом, по различным оценкам, уже достигла 1,3 миллиарда долларов, а в создании машины участвовали сразу несколько государств.

Как считают эксперты, для производства машины, сопоставимой по характеристикам с F-35B, понадобится решить ряд серьезных задач: миниатюризация авионики, создание нового поколения бортовых систем и проектирование планера с особыми характеристиками.

Возможности для этого у российского авиапрома есть, тем более что многие системы можно унифицировать с самолетом пятого поколения Су-57. При этом одним из самых трудозатратных узлов может стать двигатель машины.

«Разработчик двигателя для Як-38 прекратил свое существование. Если какая-либо документация по поворотному соплу, в том числе и форсажному, наверняка еще сохранилась, то людей с практическим опытом создания таких узлов и агрегатов, скорее всего, уже не найти.

Здесь у нас, вероятно, утеряны компетенции, - считает Олег Пантелеев. - В целом же, полагаю, что авиационная промышленность сможет дать достойный ответ в виде дееспособного проекта СВВП, если заказчик в лице Минобороны примет решение по авианесущему флоту и его авиационной составляющей».


УДК «Прибой»

Россия сможет приступить к созданию авианосцев в обозримой перспективе. Как заявляют в Минобороны, в 2025–2030 годах ожидается закладка тяжелого авианосца проекта 23000 «Шторм».

К этому времени ВМФ России намерен получить два новых универсальных десантных корабля «Прибой», способных нести самолеты с вертикальным взлетом и посадкой.

Вадим Саранов



Кадры