Принцип работы жрд. Преимущества и недостатки ЭРД, сфера использования. Отрывок, характеризующий Жидкостный ракетный двигатель

Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.

Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива. Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива. Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.

Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.

Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.

Химические ракетные двигатели (ХРД)

Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.

История создания

Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.

Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.

Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.

Устройство и принцип работы химических ракетных двигателей

Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.

В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.

Плюсы и минусы химических РД, их сфера применения

Достоинствами твердотопливных РД являются:

  • простота конструкции;
  • сравнительная безопасность в плане экологии;
  • невысокая цена;
  • надежность.

Недостатки РДТТ:

  • ограничение по времени работы: топливо сгорает очень быстро;
  • невозможность перезапуска двигателя, его остановки и регулирования тяги;
  • небольшой удельный вес в пределах 2000-3000 м/с.

Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).

Достоинства жидкостных РД:

  • высокий показатель удельного импульса (порядка 4500 м/с и выше);
  • возможность регулирования тяги, остановки и перезапуска двигателя;
  • меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.

Недостатки ЖРД:

  • сложная конструкция и пуско-наладочные работы;
  • в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.

Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.

Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.

Ядерные ракетные двигатели (ЯРД)

Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.

История создания

Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.

Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.

Устройство и принцип действия

Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.

Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.

Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.

Преимущества и недостатки ЯРД

Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.

Электрические ракетные двигатели (ЭРД)

Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.

История создания

Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.

Устройство и принцип работы

Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.

Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.

Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.

Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.

Преимущества и недостатки ЭРД, сфера использования

Среди преимуществ ЭРД:

  • высокий показатель удельного импульса, верхний предел которого практически не ограничен;
  • малый расход топлива (рабочего тела).

Недостатки:

  • высокий уровень потребления электроэнергии;
  • сложность конструкции;
  • небольшая тяга.

На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.

Как устроен и работает жидкостно-реактивный двигатель

Жидкостно-реактивные двигатели применяются в настоящее время в качестве двигателей для тяжелых ракетных снарядов противовоздушной обороны, дальних и стратосферных ракет, ракетных самолетов, ракетных авиабомб, воздушных торпед и т. д. Иногда ЖРД применяются и в качестве стартовых двигателей для облегчения взлета самолетов.

Имея в виду основное назначение ЖРД, мы ознакомимся с их устройством и работой на примерах двух двигателей: одного - для дальней или стратосферной ракеты, другого - для ракетного самолета. Эти конкретные двигатели далеко не во всем являются типичными и, конечно, уступают по своим данным новейшим двигателям этого типа, но все же являются во многом характерными и дают довольно ясное представление о современном жидкостно-реактивном двигателе.

ЖРД для дальней или стратосферной ракеты

Ракеты этого типа применялись либо в качестве дальнобойного сверхтяжелого снаряда, либо для исследования стратосферы. Для военных целей они были применены немцами для бомбардировки Лондона в 1944 г. Эти ракеты имели около тонны взрывчатого вещества и дальность полета около 300 км . При исследовании стратосферы головка ракеты вместо взрывчатки несет в себе различную исследовательскую аппаратуру и обычно имеет приспособление для отделения от ракеты и спуска на парашюте. Высота подъема ракеты 150–180 км .

Внешний вид такой ракеты представлен на фиг. 26, а ее разрез на фиг. 27. Фигуры людей, стоящих рядом с ракетой, дают представление о внушительных размерах ракеты: ее общая длина равна 14 м , диаметр около 1,7 м , а по оперению около 3,6 м , вес снаряженной ракеты со взрывчаткой - 12,5 тонны.

Фиг. 26. Подготовка к запуску стратосферной ракеты.

Ракета движется с помощью жидкостно-реактивного двигателя, расположенного в ее задней части. Общий вид двигателя показан на фиг. 28. Двигатель работает на двухкомпонентном топливе - обычном винном (этиловом) спирте 75 %-ной крепости и жидком кислороде, которые хранятся в двух отдельных больших баках, как это показано на фиг. 27. Запас топлива на ракете - около 9 тонн, что составляет почти 3/4 общего веса ракеты, да и по объему топливные баки составляют большую часть всего объема ракеты. Несмотря на такое огромное количество топлива его хватает всего только на 1 минуту работы двигателя, так как двигатель расходует больше 125 кг топлива в секунду.

Фиг. 27. Разрез ракеты дальнего действия.

Количество обоих компонентов топлива, спирта и кислорода, рассчитывается так, чтобы они выгорали одновременно. Так как для сгорания 1 кг спирта в данном случае расходуется около 1,3 кг кислорода, то бак для горючего вмещает примерно 3,8 тонны спирта, а бак для окислителя - около 5 тонн жидкого кислорода. Таким образом даже в случае применения спирта, который требует для сгорания значительно меньше кислорода, чем бензин или керосин, заполнение обоих баков одним только горючим (спиртом) при использовании атмосферного кислорода увеличило бы продолжительность работы двигателя в два-три раза. Вот к чему приводит необходимость иметь окислитель на борту ракеты.

Фиг. 28. Двигатель ракеты.

Невольно возникает вопрос: как же ракета покрывает расстояние в 300 км, если двигатель работает всего только 1 минуту? Объяснение этому дает фиг. 33, на которой представлена траектория полета ракеты, а также указано изменение скорости вдоль траектории.

Запуск ракеты осуществляется после установки ее в вертикальное положение с помощью легкого пускового устройства, как это видно на фиг. 26. После запуска ракета вначале поднимается почти вертикально, а по истечении 10–12 секунд полета начинает отклоняться от вертикали и под действием рулей, управляемых гироскопами, движется по траектории, близкой к дуге окружности. Такой полет длится все время, пока работает двигатель, т. е. примерно в течение 60 сек.

Когда скорость достигает расчетной величины, приборы управления выключают двигатель; к этому моменту в баках ракеты почти не остается топлива. Высота ракеты к моменту окончания работы двигателя равняется 35–37 км , а ось ракеты составляет с горизонтом угол в 45° (этому положению ракеты соответствует точка А на фиг. 29).

Фиг. 29. Траектория полета дальней ракеты.

Такой угол возвышения обеспечивает максимальную дальность в последующем полете, когда ракета движется по инерции, подобно артиллерийскому снаряду, который вылетел бы из орудия, обрез ствола которого находится на высоте 35–37 км . Траектория дальнейшего полета близка к параболе, а общее время полета равно приблизительно 5 мин. Максимальная высота, которой достигает при этом ракета, составляет 95-100 км , стратосферные же ракеты достигают значительно больших высот, более 150 км . На фотографиях, сделанных с этой высоты аппаратом, установленным на ракете, уже отчетливо видна шарообразность земли.

Интересно проследить, как изменяется скорость полета по траектории. К моменту выключения двигателя, т. е. после 60 секунд полета, скорость полета достигает наибольшего значения и равна примерно 5500 км/час , т. е. 1525 м/сек . Именно в этот момент мощность двигателя становится также наибольшей, достигая для некоторых ракет почти 600.000 л. с .! Дальше под воздействием силы тяжести скорость ракеты уменьшается, а после достижения наивысшей точки траектории по той же причине снова начинает расти до тех пор, пока ракета не войдет в плотные слои атмосферы. В течение всего полета, кроме самого начального участка - разгона, - скорость ракеты значительно превышает скорость звука, средняя скорость по всей траектории составляет примерно 3500 км/час и даже на землю ракета падает со скоростью, в два с половиной раза превышающей скорость звука и равной 3000 км/час . Это значит, что мощный звук от полета ракеты доносится лишь после ее падения. Здесь уже не удастся уловить приближение ракеты с помощью звукоулавливателей, обычно применяющихся в авиации или морском флоте, для этого потребуются совсем другие методы. Такие методы основаны на применении вместо звука радиоволн. Ведь радиоволна распространяется со скоростью света - наибольшей скоростью, возможной на земле. Эта скорость, равная 300 000 км/сек, конечно, более чем достаточна, чтобы отметить приближение самой быстролетящей ракеты.

С большой скоростью полета ракет связана еще одна проблема. Дело в том, что при больших скоростях полета в атмосфере, вследствие торможения и сжатия воздуха, набегающего на ракету, температура ее корпуса сильно повышается. Расчет показывает, что температура стенок описанной выше ракеты должна достигать 1000–1100 °C. Испытания показали, правда, что в действительности эта температура значительно меньше из-за охлаждения стенок путем теплопроводности и излучения, но все же она достигает 600–700 °C, т. е. ракета нагревается до красного каления. С увеличением скорости полета ракеты температура ее стенок будет быстро расти и может стать серьезным препятствием для дальнейшего роста скорости полета. Вспомним, что метеориты (небесные камни), врывающиеся с огромной скоростью, до 100 км/сек , в пределы земной атмосферы, как правило, «сгорают», и то, что мы принимаем за падающий метеорит («падающую звезду») есть в действительности только сгусток раскаленных газов и воздуха, образующийся в результате движения метеорита с большой скоростью в атмосфере. Поэтому полеты с весьма большими скоростями возможны лишь в верхних слоях атмосферы, где воздух разрежен, или за ее пределами. Чем ближе к земле, тем меньше допустимые скорости полета.

Фиг. 30. Схема устройства двигателя ракеты.

Схема двигателя ракеты представлена на фиг. 30. Обращает на себя внимание относительная простота этой схемы по сравнению с обычными поршневыми авиационными двигателями; в особенности характерно для ЖРД почти полное отсутствие в силовой схеме двигателя движущихся частей. Основными элементами двигателя являются камера сгорания, реактивное сопло, парогазогенератор и турбонасосный агрегат для подачи топлива и система управления.

В камере сгорания происходит сгорание топлива, т. е. преобразование химической энергии топлива в тепловую, а в сопле - преобразование тепловой энергии продуктов сгорания в скоростную энергию струи газов, вытекающих из двигателя в атмосферу. Как изменяется состояние газов при течении их в двигателе показано на фиг. 31.

Давление в камере сгорания равно 20–21 ата , а температура достигает 2 700 °C. Характерным для камеры сгорания является огромное количество тепла, которое выделяется в ней при сгорании в единицу времени или, как говорят, теплонапряженность камеры. В этом отношении камера сгорания ЖРД значительно превосходит все другие известные в технике топочные устройства (топки котлов, цилиндры двигателей внутреннего сгорания и другие). В данном случае в камере сгорания двигателя в секунду выделяется такое количество тепла, которое достаточно для того, чтобы вскипятить более 1,5 тонны ледяной воды! Чтобы камера сгорания при таком огромном количестве выделяющегося в ней тепла не вышла из строя, необходимо интенсивно охлаждать ее стенки, как, впрочем, и стенки сопла. Для этой цели, как это видно на фиг. 30, камера сгорания и сопло охлаждаются горючим - спиртом, который сначала омывает их стенки, а уже затем, подогретый, поступает в камеру сгорания. Эта система охлаждения, предложенная еще Циолковским, выгодна также и потому, что тепло, отведенное от стенок, не теряется и снова возвращается в камеру (такую систему охлаждения называют поэтому иногда регенеративной). Однако одного только наружного охлаждения стенок двигателя оказывается недостаточно, и для понижения температуры стенок одновременно применяется охлаждение их внутренней поверхности. Для этой цели стенки в ряде мест имеют небольшие сверления, расположенные в нескольких кольцевых поясах, так что через эти отверстия внутрь камеры и сопла поступает спирт (около 1/10 от общего его расхода). Холодная пленка этого спирта, текущего и испаряющегося на стенках, предохраняет их от непосредственного соприкосновения с пламенем факела и тем снижает температуру стенок. Несмотря на то, что температура газов, омывающих изнутри стенки, превышает 2500 °C, температура внутренней поверхности стенок, как показали испытания, не превышает 1 000 °C.

Фиг. 31. Изменение состояния газов в двигателе.

Топливо подается в камеру сгорания через 18 горелок-форкамер, расположенных на ее торцевой стенке. Кислород поступает внутрь форкамер через центральные форсунки, а спирт, выходящий из рубашки охлаждения, - через кольцо маленьких форсунок вокруг каждой форкамеры. Таким образом обеспечивается достаточно хорошее перемешивание топлива, необходимое для осуществления полного сгорания за то очень короткое время пока топливо находится в камере сгорания (сотые доли секунды).

Реактивное сопло двигателя изготовлено из стали. Его форма, как это хорошо видно на фиг. 30 и 31, представляет собой сначала сужающуюся, а потом расширяющуюся трубу (так называемое сопло Лаваля). Как указывалось ранее, такую же форму имеют сопла и пороховых ракетных двигателей. Чем объясняется такая форма сопла? Как известно, задачей сопла является обеспечение полного расширения газа с целью получения наибольшей скорости истечения. Для увеличения скорости течения газа по трубе ее сечение должно вначале постепенно уменьшаться, что имеет место и при течении жидкостей (например, воды). Скорость движения газа будет увеличиваться, однако, только до тех пор, пока она не станет равной скорости распространения звука в газе. Дальнейшее увеличение скорости в отличие от жидкости станет возможным только при расширении трубы; это отличие течения газа от течения жидкости связано с тем, что жидкость несжимаема, а объем газа при расширении сильно увеличивается. В горловине сопла, т. е. в наиболее узкой его части, скорость течения газа всегда равна скорости звука в газе, в нашем случае около 1000 м/сек . Скорость же истечения, т. е. скорость в выходном сечении сопла, равна 2100–2200 м/сек (таким образом удельная тяга составляет примерно, 220 кг сек/кг ).

Подача топлива из баков в камеру сгорания двигателя осуществляется под давлением с помощью насосов, имеющих привод от турбины и скомпонованных вместе с нею в единый турбонасосный агрегат, как это видно на фиг. 30. В некоторых двигателях подача топлива осуществляется под давлением, которое создается в герметических топливных баках с помощью какого-либо инертного газа - например, азота, хранящегося под большим давлением в специальных баллонах. Такая система подачи проще насосной, но, при достаточно большой мощности двигателя, получается более тяжелой. Однако и при насосной подаче топлива в описываемом нами двигателе баки, как кислородный, так и спиртовой, находятся под некоторым избыточным давлением изнутри для облегчения работы насосов и предохранения баков от смятия. Это давление (1,2–1,5 ата ) создается в спиртовом баке воздухом или азотом, в кислородном - парами испаряющегося кислорода.

Оба насоса - центробежного типа. Турбина, приводящая насосы, работает на парогазовой смеси, получающейся в результате разложения перекиси водорода в специальном парогазогенераторе. В этот парогазогенератор из особого бачка подается перманганат натрия, который является катализатором, ускоряющим разложение перекиси водорода. При запуске ракеты перекись водорода под давлением азота поступает в парогазогенератор, в котором начинается бурная реакция разложения перекиси с выделением паров воды и газообразного кислорода (это так называемая «холодная реакция», применяющаяся иногда и для создания тяги, в частности, в стартовых ЖРД). Парогазовая смесь, имеющая температуру около 400 °C и давление свыше 20 ата , поступает на колесо турбины и затем выбрасывается в атмосферу. Мощность турбины затрачивается полностью на привод обоих топливных насосов. Эта мощность не так уже мала - при 4000 об/мин колеса турбины она достигает почти 500 л. с .

Так как смесь кислорода со спиртом не является самореагирующим топливом, то для начала горения необходимо предусмотреть какую-либо систему зажигания. В двигателе воспламенение осуществляется с помощью специального запала, образующего факел пламени. Для этой цели применялся обычно пиротехнический запал (твердый воспламенитель типа пороха), реже использовался жидкий воспламенитель.

Запуск ракеты осуществляется следующим образом. Когда запальный факел поджигается, то открывают главные клапаны, через которые в камеру сгорания поступают самотеком из баков спирт и кислород. Управление всеми клапанами в двигателе осуществляется с помощью сжатого азота, хранящегося на ракете в батарее баллонов высокого давления. Когда начинается горение топлива, то находящийся на расстоянии наблюдатель с помощью электрического контакта включает подачу перекиси водорода в парогазогенератор. Начинает работать турбина, которая приводит насосы, подающие спирт и кислород в камеру сгорания. Тяга растет и когда она становится больше веса ракеты (12–13 тонн), то ракета взлетает. От момента зажигания запального факела до того, как двигатель разовьет полную тягу, проходит всего 7-10 секунд.

При запуске очень важно обеспечить строгий порядок поступления в камеру сгорания обоих компонентов топлива. В этом заключается одна из важных задач системы управления и регулирования двигателя. Если в камере сгорания накапливается один из компонентов (поскольку задерживается поступление другого), то обычно вслед за этим происходит взрыв, при котором двигатель часто выходит из строя. Это, наряду со случайными перерывами в горении, является одной из наиболее частых причин катастроф при испытаниях ЖРД.

Обращает на себя внимание ничтожный вес двигателя по сравнению с развиваемой им тягой. При весе двигателя меньше 1000 кг тяга составляет 25 тонн, так что удельный вес двигателя, т. е. вес, приходящийся на единицу тяги, равен всего только

Для сравнения укажем, что обычный поршневой авиационный двигатель, работающий на винт, имеет удельный вес 1–2 кг/кг , т. е. в несколько десятков раз больше. Важно также то, что удельный вес ЖРД не изменяется при изменении скорости полета, тогда как удельный вес поршневого двигателя быстро растет с ростом скорости.

ЖРД для ракетного самолета

Фиг. 32. Проект ЖРД с регулируемой тягой.

1 - передвижная игла; 2 - механизм передвижения иглы; 3 - подача горючего; 4 - подача окислителя.

Основное требование, предъявляемое к авиационному жидкостно-реактивному двигателю - возможность изменять развиваемую им тягу в соответствии с режимами полета самолета, вплоть до остановки и повторного запуска двигателя в полете. Наиболее простой и распространенный способ изменения тяги двигателя заключается в регулировании подачи топлива в камеру сгорания, вследствие чего изменяется давление в камере и тяга. Однако этот способ невыгоден, так как при уменьшении давления в камере сгорания, понижаемого в целях уменьшения тяги, уменьшается доля тепловой энергии топлива, переходящая в скоростную энергию струи. Это приводит к увеличению расхода топлива на 1 кг тяги, а следовательно, и на 1 л. с . мощности, т. е. двигатель при этом начинает работать менее экономично. Для уменьшения этого недостатка авиационные ЖРД часто имеют вместо одной от двух до четырех камер сгорания, что позволяет при работе на пониженной мощности выключать одну или несколько камер. Регулирование тяги изменением давления в камере, т. е. подачей топлива, сохраняется и в этом случае, но используется лишь в небольшом диапазоне до половины тяги отключаемой камеры. Наиболее выгодным способом регулирования тяги ЖРД было бы изменение проходного сечения его сопла при одновременном уменьшении подачи топлива, так как при этом уменьшение секундного количества вытекающих газов достигалось бы при сохранении неизменным давления в камере сгорания, а, значит, и скорости истечения. Такое регулирование проходного сечения сопла можно было бы осуществить, например, с помощью передвижной иглы специального профиля, как это показано на фиг. 32, изображающей проект ЖРД с регулируемой таким способом тягой.

На фиг. 33 представлен однокамерный авиационный ЖРД, а на фиг. 34 - такой же ЖРД, но с добавочной небольшой камерой, которая используется на крейсерском режиме полета, когда требуется небольшая тяга; основная камера при этом отключается совсем. На максимальном режиме работают обе камеры, причем большая развивает тягу в 1700 кг, а малая - 300 кг , так что общая тяга составляет 2000 кг . В остальном двигатели по конструкции аналогичны.

Двигатели, изображенные на фиг. 33 и 34, работают на самовоспламеняющемся топливе. Это топливо состоит из перекиси водорода в качестве окислителя и гидразин-гидрата в качестве горючего, в весовом соотношении 3:1. Точнее, горючее представляет собой сложный состав, состоящий из гидразин-гидрата, метилового спирта и солей меди в качестве катализатора, обеспечивающего быстрое протекание реакции (применяются и другие катализаторы). Недостатком этого топлива является то, что оно вызывает коррозию частей двигателя.

Вес однокамерного двигателя составляет 160 кг , удельный вес равен

На килограмм тяги. Длина двигателя - 2,2 м . Давление в камере сгорания - около 20 ата . При работе на минимальной подаче топлива для получения наименьшей тяги, которая равна 100 кг , давление в камере сгорания уменьшается до 3 ата . Температура в камере сгорания достигает 2500 °C, скорость истечения газов около 2100 м/сек . Расход топлива равен 8 кг/сек , а удельный расход топлива составляет 15,3 кг топлива на 1 кг тяги в час.

Фиг. 33. Однокамерный ЖРД для ракетного самолета

Фиг. 34. Двухкамерный авиационный ЖРД.

Фиг. 35. Схема подачи топлива в авиационном ЖРД.

Схема подачи топлива в двигатель представлена на фиг. 35. Как и в двигателе ракеты, подача горючего и окислителя, хранящихся в отдельных баках, производится под давлением около 40 ата насосами, имеющими привод от турбинки. Общий вид турбонасосного агрегата показан на фиг. 36. Турбинка работает на паро-газовой смеси, которая, как и раньше, получается в результате разложения перекиси водорода в парогазогенераторе, который в этом случае наполнен твердым катализатором. Горючее до поступления в камеру сгорания охлаждает стенки сопла и камеры сгорания, циркулируя, в специальной охлаждающей рубашке. Изменение подачи топлива, необходимое для регулирования тяги двигателя в процессе полета, достигается изменением подачи перекиси водорода в парогазогенератор, что вызывает изменение оборотов турбинки. Максимальное число оборотов турбинки равно 17 200 об/мин. Запуск двигателя осуществляется с помощью электромотора, приводящего во вращение турбонасосный агрегат.

Фиг. 36. Турбонасосный агрегат авиационного ЖРД.

1 - шестерня привода от пускового электромотора; 2 - насос для окислителя; 3 - турбина; 4 - насос для горючего; 5 - выхлопной патрубок турбины.

На фиг. 37 показана схема установки однокамерного ЖРД в хвостовой части фюзеляжа одного из опытных ракетных самолетов.

Назначение самолетов с жидкостно-реактивными двигателями определяется свойствами ЖРД - большой тягой и, соответственно, большой мощностью на больших скоростях полета и больших высотах и малой экономичностью, т. е. большим расходом топлива. Поэтому ЖРД обычно устанавливаются на военных самолетах - истребителях-перехватчиках. Задача такого самолета - при получении сигнала о приближении самолетов противника быстро взлететь и набрать большую высоту, на которой обычно летят эти самолеты, а затем, используя свое преимущество в скорости полета, навязать противнику воздушный бой. Общая продолжительность полета самолета с жидкостно-реактивным двигателем определяется запасом топлива на самолете и составляет 10–15 минут, поэтому эти самолеты обычно могут совершать боевые операции лишь в районе своего аэродрома.

Фиг. 37. Схема установки ЖРД на самолете.

Фиг. 38. Ракетный истребитель (вид в трех проекциях)

На фиг. 38 показан истребитель-перехватчик с описанным выше ЖРД. Размеры этого самолета, как и других самолетов этого типа, обычно невелики. Полный вес самолета с топливом составляет 5100 кг ; запаса топлива (свыше 2,5 тонны) хватает только на 4,5 минуты работы двигателя на полной мощности. Максимальная скорость полета - свыше 950 км/час ; потолок самолета, т. е. максимальная высота, которой он может достигнуть, - 16 000 м . Скороподъемность самолета характеризуется тем, что за 1 минуту он может подняться с 6 до 12 км .

Фиг. 39. Устройство ракетного самолета.

На фиг. 39 показано устройство другого самолета с ЖРД; это - опытный самолет, построенный для достижения скорости полета, превышающей скорость звука (т. е. 1200 км/час у земли). На самолете, в задней части фюзеляжа, установлен ЖРД, имеющий четыре одинаковых камеры с общей тягой 2720 кг . Длина двигателя 1400 мм , максимальный диаметр 480 мм , вес 100 кг . Запас топлива на самолете, в качестве которого используются спирт и жидкий кислород, составляет 2360 л .

Фиг. 40. Четырехкамерный авиационный ЖРД.

Внешний вид этого двигателя показан на фиг. 40.

Другие области применения ЖРД

Наряду с основным применением ЖРД в качестве двигателей для дальних ракет и ракетных самолетов они применяются в настоящее время и в ряде других случаев.

Довольно широкое применение получили ЖРД в качестве двигателей тяжелых ракетных снарядов, подобных представленному на фиг. 41. Двигатель этого снаряда может служить примером простейшего ЖРД. Подача топлива (бензин и жидкий кислород) в камеру сгорания этого двигателя производится под давлением нейтрального газа (азота). На фиг. 42 показана схема тяжелой ракеты, применявшейся в качестве мощного зенитного снаряда; на схеме приведены габаритные размеры ракеты.

Применяются ЖРД и в качестве стартовых авиационных двигателей. В этом случае иногда используется низкотемпературная реакция разложения перекиси водорода, отчего такие двигатели называют «холодными».

Имеются случаи применения ЖРД в качестве ускорителей для самолетов, в частности, самолетов с турбореактивными двигателями. Насосы подачи топлива з этом случае приводятся иногда от вала турбореактивного двигателя.

ЖРД применяются наряду с пороховыми двигателями также для старта и разгона летающих аппаратов (или их моделей) с прямоточными воздушно-реактивными двигателями. Как известно, эти двигатели развивают очень большую тягу при высоких скоростях полета, больших скорости звука, но вовсе не развивают тяги при взлете.

Наконец, следует упомянуть еще об одном применении ЖРД, имеющем место в последнее время. Для изучения поведения самолета при большой скорости полета, приближающейся к скорости звука и превышающей ее, требуется проведение серьезной и дорогостоящей исследовательской работы. В частности, требуется определение сопротивления крыльев самолета (профилей), которое обычно производится в специальных аэродинамических трубах. Для создания в таких трубах условий, соответствующих полету самолета на большой скорости, приходится иметь силовые установки очень большой мощности для привода вентиляторов, создающих поток в трубе. Вследствие этого сооружение и эксплоатация труб для проведения испытания при сверхзвуковых скоростях требуют огромных затрат.

В последнее время, наряду со строительством сверхзвуковых труб, задача исследования различных профилей крыльев скоростных самолетов, как, кстати сказать, и испытания прямоточных ВРД, решается также с помощью жидкостно-реактивных

Фиг. 41. Ракетный снаряд с ЖРД.

двигателей. По одному из этих способов исследуемый профиль устанавливается на дальней ракете с ЖРД, подобной описанной выше, и все показания приборов, измеряющих сопротивление профиля в полете, передаются на землю с помощью радио-телеметрических устройств.

Фиг. 42. Схема устройства мощного зенитного снаряда с ЖРД.

7 - боевая головка; 2 - баллон со сжатым азотом; 3 - бак с окислителем; 4 - бак с горючим; 5 - жидкостно-реактивный двигатель.

По другому способу сооружается специальная ракетная тележка, передвигающаяся по рельсам с помощью ЖРД. Результаты испытания профиля, установленного на такой тележке в особом весовом механизме, записываются специальными автоматическими приборами, расположенными также на тележке. Такая ракетная тележка показана на фиг. 43. Длина рельсового пути может достигать 2–3 км .

Фиг. 43. Ракетная тележка для испытания профилей крыльев самолета.

Из книги Определение и устранение неисправностей своими силами в автомобиле автора Золотницкий Владимир

Двигатель работает неустойчиво на всех режимах Неисправности системы зажигания Износ и повреждения контактного уголька, зависание его в крышке распределителя зажигания. Утечка тока на «массу» через нагар или влагу на внутренней поверхности крышки. Заменить контактный

Из книги Броненосец " ПЕТР ВЕЛИКИЙ" автора

Двигатель работает неустойчиво при малой частоте вращения коленчатого вала или глохнет на холостом ходу Неисправности карбюратора Низкий или высокий уровень топлива в поплавковой камере. Низкий уровень – хлопки в карбюраторе, высокий – хлопки в глушителе. На выхлопе

Из книги Броненосец "Наварин" автора Арбузов Владимир Васильевич

Двигатель работает нормально на холостом ходу, но автомобиль разгоняется медленно и с «провалами»; плохая приемистость двигателя Неисправности системы зажигания Не отрегулирован зазор между контактами прерывателя. Отрегулировать угол замкнутого состояния контактов

Из книги Самолеты мира 2000 02 автора Автор неизвестен

Двигатель «троит» – не работает один или два цилиндра Неисправности системы зажигания Неустойчивая работа двигателя на малых и средних оборотах. Повышенный расход топлива. Выхлоп дыма синий. Несколько приглушены периодически издаваемые звуки, которые особенно хорошо

Из книги Мир Авиации 1996 02 автора Автор неизвестен

При резком открывании дроссельных заслонок двигатель работает с перебоями Неисправности механизма газораспределения Не отрегулированы зазоры в клапанах. Через каждые 10 тыс. км пробега (для ВАЗ-2108, -2109 через 30 тыс. км) отрегулировать зазоры клапанов. При уменьшенном

Из книги Обслуживаем и ремонтируем Волга ГАЗ-3110 автора Золотницкий Владимир Алексеевич

Двигатель неравномерно и неустойчиво работает на средних и больших частотах вращения коленчатого вала Неисправности системы зажигания Разрегулировок зазор контактов прерывателя. Для точной регулировки зазора между контактами измерять не сам зазор, да еще дедовским

Из книги Ракетные двигатели автора Гильзин Карл Александрович

Приложения КАК БЫЛ УСТРОЕН "ПЕТР ВЕЛИКИЙ" 1 . Мореходные и маневренные качестваВесь комплекс проведенных в 1876 году испытаний выявил следующие мореходные качества. Безопасность океанского плавания "Петра Великого" не внушала опасений, а его причисление к классу мониторов

Из книги Воздушно-реактивные двигатели автора Гильзин Карл Александрович

Как был устроен броненосец "Наварин" Корпус броненосца имел наибольшую длину 107 м (длина между перпендикулярами 105,9 м). ширину 20,42, проектную осадку 7,62 м носом и 8,4 кормой и набирался из 93 шпангоутов (шпация 1,2 метра). Шпангоуты обеспечивали продольную прочность и полные

Из книги История электротехники автора Коллектив авторов

Су-10 – первый реактивный бомбардировщик ОКБ П.О. Сухого Николай ГОРДЮКОВПосле второй мировой войны началась эпоха реактивной авиации. Очень быстро проходило переоснащение советских и зарубежных ВВС на истребители с турбореактивными двигателями. Однако создание

Из книги автора

Из книги автора

Двигатель работает неустойчиво при малой частоте вращения коленчатого вала или глохнет на холостом ходу Рис. 9. Регулировочные винты карбюратора: 1 – винт эксплуатационной регулировки (винт количества); 2 – винт состава смеси, (винт качества) с ограничительным

Из книги автора

Двигатель работает неустойчиво на всех режимах

Из книги автора

Как устроен и работает пороховой ракетный двигатель Основными конструктивными элементами порохового, как и любого другого ракетного двигателя, являются камера сгорания и сопло (фиг. 16).Благодаря тому, что подача пороха, как и вообще всякого твердого топлива, в камеру

Из книги автора

Топливо для жидкостно-реактивного двигателя Важнейшие свойства и характеристики жидкостно-реактивного двигателя, да и сама конструкция его, прежде всего зависят от топлива, которое применяется в двигателе.Основным требованием, которое предъявляется к топливу для ЖРД,

Из книги автора

Глава пятая Пульсирующий воздушно-реактивный двигатель На первый взгляд возможность значительного упрощения двигателя при переходе к большим скоростям полета кажется странной, пожалуй, даже невероятной. Вся история авиации до сих пор говорит о противоположном: борьба

Из книги автора

6.6.7. ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ В ЭЛЕКТРОПРИВОДЕ. СИСТЕМЫ ТИРИСТОРНЫЙ ПРЕОБРАЗОВАТЕЛЬ - ДВИГАТЕЛЬ (ТП - Д) И ИСТОЧНИК ТОКА - ДВИГАТЕЛЬ (ИТ - Д) В послевоенные годы в ведущих лабораториях мира произошел прорыв в области силовой электроники, кардинально изменивший многие

Двигателистами КБ «Южное» была выполнена ответственная и сложная задача – разработка двигательного блока 11Д410 для лунного корабля.

Блок двигателей 11Д410 состоял из основного двигателя РД858 и резервного РД859 и решал следующие задачи: осуществление мягкой посадки на поверхность Луны, взлет с поверхности Луны и выведение лунного корабля на эллиптическую орбиту искусственного спутника Луны.

Так как предусматривался полет лунного корабля с экипажем на борту, то к надежности двигателей предъявлялись самые высокие требования. Надежность необходимо было подтвердить большим числом испытаний с имитацией натурных условий работы. Для обеспечения мягкой посадки на Луну и взлета с ее поверхности двигатель РД858 имеет два режима тяги: основной и режим глубокого дросселирования (РГД) и обеспечивает два включения. На основном режиме диапазон регулирования тяги составляет ±9,8%, на РГД – ±35%. Такое глубокое дросселирование требовало применения особых конструктивных мер для обеспечения устойчивости работы камеры двигателя при надежном охлаждении.

Резервный двигатель РД859 – однорежимный с регулированием тяги в диапазоне ±9,8%.

Высочайшие требования предъявлялись к надежности турбонасосных агрегатов двигателей: в частности к торцовым уплотнениям, разделяющим полости насоса окислителя и турбины. Потребовался значительный объем экспериментальных работ, в результате которых была подобрана наиболее надежная и работоспособная пара трения. Конструкция оказалась удачной – ТНА имели ресурс, оценивающийся тысячами секунд.

Для обеспечения надежного охлаждения корпус камеры в зоне высоких тепловых потоков имеет спиральные фрезерованные канавки переменного оптимального сечения на сложнопрофильных деталях.

Количество включений на одном двигателе достигало двенадцати вместо двух в полете. Резервный двигатель является уникальным по возможности запуска после трехсекундного перерыва между выключением и повторным запуском. Процессы выключения двигателя, опорожнения трактов камеры и повторного запуска после трехсекундной паузы тщательно исследовались для подтверждения сходимости характеристик. Параметры повторного запуска при испытаниях были идентичны первому. Ни один из существующих двигателей с турбонасосной системой подачи не обеспечивал такую возможность. Для двигателей с турбонасосной системой подачи, обеспечивающих широкий диапазон регулирования тяги, эти ЖРД имеют весьма высокие величины удельного импульса. Масса и габариты блока двигателей свидетельствуют о высокой степени совершенства конструкции, даже с учетом того, что в ее состав входили системы контроля работы двигателей и регулирования тяги. Общая масса двигателей составляет 110 кг при суммарной тяге 4100 кгс. Для сравнения: масса двигателя верхней ступени РН Ариан-5 при тяге 2700 кгс превышает 100 кг.

Очень большим был объем отработки: 181 двигатель РД858 при суммарной наработке 253281 с и 181 двигатель РД859 при суммарной наработке 209463 с. Испытано 11 блоков двигателей 11Д410 с имитацией аварийных ситуаций.

В целом блок ЖРД лунного посадочного модуля является одним из самых надежных среди своего класса двигателей. Три блока двигателей прошли успешные испытания на орбите вокруг Земли в составе специальных космических аппаратов Т-2К, запущенных ракетой-носителем Р-7.

Маршевые двигатели

Название

Тяга в пустоте, кгс

Компоненты топлива

Масса, кг

Окислитель –

азотная кислота + 27% N2O4

Горючее –

Предназначен для второй ступени ракеты 8К66 (SS-7).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для торможения и управления орбитальным космическим аппаратом по всем каналам стабилизации (разгонная ступень 8K69) (SS-9-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для второй ступени ракеты 8К99 (SS-15).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

123

Предназначен для создания тяги управления третьей ступенью ракеты 11К68 («Циклон-3») на активном участке полета по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

192

Предназначен для вторых ступеней ракет 15А15 и 15А16 (SS-17-1) и (SS-17-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

199

Предназначен для создания двух режимов тяги и управления по всем каналам стабилизации при полете ступени разведения ракеты 15А18 (SS-18-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

125,4

Предназначен для установки в головном отсеке космического буксира и ступеней разведения 15Ж44, 15Ж60 (SS-24-1) и (SS-24-2).

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

125

Предназначен для использования в составе апогейной ступени РН «Зенит» и «Циклон-4».

Окислитель –

азотная кислота +

Горючее –

несимметричный диметилгидразин

196

Предназначен для управления полетом космического буксира второй ступени ракеты 15А18М (SS-18-3) по всем каналам стабилизации.

История жидкостных ракетных двигателей

Первым опытом самостоятельного создания в КБ «Южное» жидкостных ракетных двигателей (ЖРД) стали начатые в 1958 г. работы по разработке рулевых двигателей для первой и второй ступеней МБР 8К64. Основной особенностью данной ракеты стало применение впервые в паре с окислителем АК-27 нового горючего – несимметричного диметилгидразина (НДМГ), которое стало основным для нескольких поколений ЖРД.

Успех, достигнутый в создании первых рулевых ЖРД, позволил начать в 1960 г. разработку нового более сложного и многофункционального двигателя РД853 для второй ступени ракеты 8К66.

В 1961 г. были начаты работы по созданию рулевых двигателей для первой и второй ступеней ракеты 8К67, работающих на новой паре компонентов топлива – тетраоксид диазота (АТ) и НДМГ.

В 1962 г. началось проектирование и отработка ЖРД РД854 на топливе АТ+НДМГ без дожигания генераторного газа для тормозной двигательной установки орбитальной головной части МБР 8К69. При проектировании двигателя впервые в практике отечественного двигателестроения было разработано и освоено в производстве трубчатое сопло камеры двигателя.

В 1964 г. были начаты работы по созданию маршевого двигателя РД857 второй ступени комбинированной ракеты 8К99, для которого впервые была разработана схема с дожиганием восстановительного генераторного газа в камере сгорания. На этом двигателе также впервые управление вектором тяги осуществлено с помощью вдува генераторного газа в сверхзвуковую часть сопла.

КБ «Южное» приняло участие и в советской лунной программе, в рамках которой в 1965 г. началась разработка ракетного блока (блока Е) лунного корабля комплекса 11А52. Созданный в КБ «Южное» блок двигателей лунного корабля состоял из основного двигателя РД858 и резервного РД859 и решал следующие задачи: осуществление мягкой посадки на поверхность Луны, взлет с поверхности Луны и выведение лунного корабля на эллиптическую орбиту искусственного спутника Луны. В целом блок ЖРД лунного посадочного модуля являлся одним из самых надежных среди своего класса двигателей. Три блока двигателей прошли успешные испытания на орбите вокруг Земли в составе специальных космических аппаратов Т-2К, запущенных с помощью РН «Союз».

Проектирование двигателя РД861 для третьей ступени РН «Циклон-3» было начато в 1966 г. Этот двигатель обладает весьма высокими энергомассовыми характеристиками.

В 1976 г., в ходе создания МБР 15А18, начались работы по разработке четырехкамерного двигателя РД864, работающего на АТ и НДМГ по схеме без дожигания генераторного газа. Двигатель обеспечил работу на двух режимах: основном и дросселированном с многократным (до 25 раз) переключением с одного режима на другой. Для этого двигателя были впервые разработаны и применены агрегаты регулирования на встречных струях высокого давления, отличающиеся высокой точностью и быстродействием.

Модификацией этого двигателя стал двигатель РД869 для МБР 15А18М, обладающий еще более высокими характеристиками.

Новым этапом для КБ «Южное» явилась разработка РН «Зенит-2», которая началась в 1977 г. Особенностью данной РН является использование на ней криогенных компонентов топлива: керосина и жидкого кислорода, при этом впервые в практике двигателестроения рулевой двигатель на указанных компонентах топлива было решено проектировать по схеме с дожиганием генераторного газа. Благодаря накопленному опыту конструирования ЖРД, внедрению передовых технических решений в ходе проектирования двигателя РД-8 удалось получить высокие энергомассовые характеристики, обеспечить высокую надежность и длительный ресурс работы.

Рулевые двигатели

Название

Тяга у Земли, кгс

Компоненты топлива

Удельный импульс в пустоте, кгс?с/кг

Масса, кг

Окислитель –

азотная кислота + 27% N2O4

Горючее –

несимметричный диметилгидразин

Предназначен для управления первой ступенью ракеты 8К64 (SS-7) по всем каналам стабилизации.

4920 (в пустоте)

Окислитель –

азотная кислота + 27% N2O4

Горючее –

несимметричный диметилгидразин

Предназначен для управления второй ступенью ракеты 8К64 (SS-7) по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления первой ступенью ракеты 8К67 (SS-9-1; SS-9-2) и ракет-носителей «Циклон» по всем каналам стабилизации.

5530 (в пустоте)

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления второй ступенью ракеты 8К67 (SS-9-1; SS-9-2) и ракет-носителей «Циклон» по всем каналам стабилизации.

Окислитель –

тетраоксид диазота

Горючее –

несимметричный диметилгидразин

Предназначен для управления полетом первой ступени ракет 15А15 и 15А16 (SS-17-1) и (SS-17-2).

8000 (в пустоте)

Окислитель –

жидкий кислород

Горючее –

Предназначен для управления полетом второй ступени ракет-носителей «Зенит» по всем каналам стабилизации.

На прошлой неделе я описывал устройство и принцип работы всех применяемых в космонавтике химических ракетных двигателей, в том числе и жидкостный ракетный двигатель (ЖРД). Для понимания принципа работы я привел простейшую схему:

На ней все до банальности просто: трубы с компонентами топлива входят в камеру сгорания, где топливо горит, а продукты сгорания выбрасываются через сопло назад, толкая двигатель вперед.

Так как же такая простая схема на деле превращается в такое сложное переплетение всяких трубок, проводов и устройств?

Начнем с того, что компоненты топлива в камеру сгорания надо как-то подавать. Самый простой способ - подать в баки с горючим и окислителем сжатый газ, чтобы его давление вытесняло из баков жидкость в камеру сгорания.

При всей своей простоте у вытеснительной подачи есть серьезный недостаток: давление газа наддува должно быть выше рабочего давления в камере сгорания, а там ведь десятки, а то и сотни атмосфер. Для реализации такой схемы придется делать баки очень прочными, чтобы они выдержали такое чудовищное давление, а это значит, что их стенки будут очень толстыми и тяжелыми. Масса - враг номер один в ракетно-космической технике, поэтому такое решение не годится. На практике вытеснительная система подачи применяется в двигателях с рабочим давлением в камере сгорания меньше 10 атмосфер. Это могут быть двигатели малой тяги для ориентации космического аппарата и маневрирования.

Для маршевых двигателей ракетных ступеней применяют такую схему подачи топлива, где компоненты топлива под действием небольшого давления газа наддува поступают в насосы, которые в свою очередь за счет вращения крыльчаток (как обычная водяная помпа, только прочнее, мощнее и тяжелее) подают жидкости в камеру сгорания под большим давлением.

Крыльчатки насосов должны вращаться с огромной скоростью, чтобы поддерживать давление в сотни атмосфер, поэтому для их привода нужно что-то посильнее обычного электромотора. Таким приводом служит турбина - такая же крыльчатка, которая вращается под действием проходящего через нее рабочего газа. Эта крыльчатка находится на одном валу с крыльчатками насосов для горючего и окислителя, и вся конструкция называется турбонасосный агрегат (ТНА).

Но откуда берется рабочий газ? Его производит специальное устройство - газогенератор . По сути это маленький однокомпонентный ЖРД, только вместо сопла из его рабочей камеры выходит труба, подающая так называемый парогаз (смесь кислорода и раскаленного водяного пара) в турбину ТНА. После турбины отработанный парогаз выбрасывается наружу через специальный патрубок. Таким образом у нас в схеме появился бак с перекисью водорода, газогенератор, ТНА и трубопроводы, соединяющие все это добро:

Также не следует забывать про вентили, которыми автоматика управляет потоками жидкостей и газов в трубах. К каждому такому вентилю идут провода, что вносит свой вклад в этот клубок.

В более мощных двигателях в газогенератор подаются те же компоненты топлива, которые используются в основной камере сгорания. В этом случае бак с перекисью не нужен, но из основных баков выходят дополнительные трубы, а на валу ТНА появляются насосы для подачи жидкостей в газогенератор. Для запуска этой системы приходится применять пиротехнические шашки для первоначальной раскрутки ТНА.

На этом видео стендовых испытаний двигателя на 15-й секунде хорошо видно, как из патрубка рядом с соплом выбрасывается отработанный парогаз:

Двигатели, где газ после ТНА выбрасывается наружу, называются ЖРД открытого цикла. В таких двигателях можно добиваться большего давления в камере сгорания, а его ТНА меньше подвержен износу, чем в ЖРД закрытого цикла, в которых газ подается в сопло, где дожигается, принимая участие в создании тяги. ЖРД закрытого цикла обладают большим коэффициентом полезного действия (надеюсь, помните, что это такое из школьной физики? ;)).

В большинстве космических ракет используются топливные пары, в которых один или оба компонента имеют очень низкую температуру кипения (жидкий кислород и жидкий водород). Пока ракета стоит на старте, эти криогенные жидкости в баках кипят и повышают давление. Чтобы баки не разорвало, их нужно дренировать. Дренаж - это сброс в атмосферу газов, образующихся при кипении криогенных жидкостей. Для этого баки с этими жидкостями оснащаются специальной трубой с вентилем, выходящей из корпуса ракеты наружу.

На этом видео на 19.25 виден туман, идущий от ракеты сверху справа. Это дренаж кислорода. Водород при дренировании надо отводить подальше, чтобы он не образовывал с кислородом взрывоопасную смесь, поэтому его сброс виден а мачте за ракетой.

Вот, вроде бы, получили мы рабочую схему ЖРД, но только вот проблема: проработает такая схема не больше нескольких секунд, а потом камера сгорания и сопло расплавятся. Уж слишком там горячо. Значит стенки камеры сгорания и сопла надо охлаждать. Для этого применяют два способа: жидкостное охлаждение и паровую завесу.

Для осуществления первого способа стенки камеры сгорания и сопла пронизаны множеством каналов, по которым течет горючее перед тем, как попасть внутрь камеры сгорания. Система работает по принципу холодильника самогонного аппарата.

Паровая завеса - это слой паров горючего, отделяющий горящую топливную смесь от стенок камеры сгорания. Образуется он при впрыске некоторого количества горючего через специальные форсунки в стенках камеры сгорания и корпуса двигателя:

В этом видео, посвященном двигателю F-1 ракеты Сатурн-5, с 49-й секунды видно между срезом сопла и ярким пламенем некую темную область. Это и есть завеса, защищающая сопло от адского жара потока газов.

Таким образом схема ЖРД из первоначальной простоты превратилась в это:

Также стоит сказать пару слов о строении головки камеры сгорания. На этой фотографии представлена головка камеры в разрезе. Видно, что у нее довольно сложное строение.

Дело в том, что для достижения надежного зажигания и стабильного горения нужно хорошо перемешать компоненты топлива, причем, в нужной пропорции. Для этого применяются специальные схемы расположения форсунок:

Кружочками отмечены форсунки подачи окислителя, точками - горючего.
а) Шахматная схема подачи. Применяется для топливных пар, в которых горючее и окислитель смешиваются примерно один к одному.
б) Сотовая схема подачи. Самая эффективная: каждая форсунка подачи горючего окружена форсунками подачи окислителя.
в) Концентрическая схема подачи.
Обратите внимание, что во всех трех схемах внешнее кольцо форсунок подает только горючее. Это нужно для предотвращения коррозии стенок камеры сгорания под действием окислителя.

Сами форсунки тоже имеют сложную конструкцию. Например, вот такая центробежная форсунка:

В некоторые форсунки вставлен шнек - устройство наподобие винта в мясорубке. Все эти хитрости нужны для одной цели: максимально приблизить зону смешивания компонентов топлива к головке камеры сгорания, чтобы сделать камеру меньше и легче.

Теперь нам осталось поговорить о системах зажигания. Тут все достаточно просто: внутри камеры сгорания помещается некое устройство, дающее огонь. Таким устройством может быть пороховая шашка, электродуговой разрядник, газовая горелка наподобие сварочной. В последнее время проводятся эксперименты по разработке лазерных систем. В ракетах Союз пошли по совсем простому пути: пиротехнические шашки поместили в камеры сгорания на обычных деревянных палках:

А для топливной пары НДМГ+АТ (несимметричный диметилгидразин + азотный тетраоксид), используемой на ракетах Протон, системы зажигания и вовсе не нужны, так как компоненты топлива самовоспламеняются при смешивании.

И последнее, о чем мы сегодня поговорим, - запуск ЖРД в невесомости.

Это серьезная проблема, так как в невесомости жидкость в баках перемешивается с газом, слипается в пузыри и не поступает в трубопроводы. Советские конструкторы первых ракет, оснащенных третьей ступенью, пошли в обход этой проблемы: двигатель третьей ступени запускался до того, как останавливался двигатель второй ступени. Для выхода газовой струи двигателя предназначалась решетчатая конструкция между второй и третьей ступенями. Наглядно этот процесс показан на времени 11.25 здесь:

Но все время так не поделаешь: для баллистической схемы выведения и для орбитальных маневров все-таки придется запускать ЖРД в невесомости.

Самый простой вариант: заключить жидкость в баке в полимерный мешок, который предотвратит перемешивание жидкости с газом:

Но такой способ не годится для баков большого объема: слишком непрочен мешок. Поэтому система с мешком применяется для запуска двигателей малой тяги, которые работают несколько секунд, создавая ускорение, достаточное для осаживания жидкостей в больших баках.

На этом видео с самого начала виден этот процесс: три газовые струи исходят как раз от двигателей малой тяги, а через несколько секунд происходит зажигание основного двигателя.

Вот такие инженерные хитрости приходится применять для решения всех проблем, связанных с работой ЖРД. Расплатой за это становится сложность конструкции двигателя, превращающегося в такой клубок, что без бутылки и не разберешься.

1) Изучение схемы и принципа работы жидкостного ракетного двигателя (ЖРД).

2) Определение изменение параметров рабочего тела вдоль тракта камеры ЖРД.

  1. ОБЩИЕ СВЕДЕНИЯ О ЖРД

2.1. Состав ЖРД

Реактивным двигателем называется техническое устройство, создающее тягу в результате истечения из него рабочего тела. Реактивные двигатели обеспечивают ускорение перемещающихся аппаратов различных типов.

Ракетный двигатель – это реактивный двигатель, использующий для работы только вещества и источники энергии, имеющиеся в запасе на борту перемещающегося аппарата.

Жидкостной ракетный двигатель (ЖРД) – это ракетный двигатель, использующий для работы топливо (первичный источник энергии и рабочее тело), находящееся в жидком агрегатном состоянии.

ЖРД в общем случае состоит из:

2- турбонасосных агрегатов (ТНА);

3- газогенераторов;

4- трубопроводов;

5- агрегатов автоматики;

6- вспомогательных устройств

Один или несколько ЖРД, в совокупности с пневмогидравлической системой (ПГС) подачи топлива в камеры двигателя и вспомогательными агрегатами ступени ракеты, составляют жидкостную ракетную двигательную установку (ЖРДУ).

В качестве жидкого ракетного топлива (ЖРТ) используется вещество или несколько веществ (окислитель, горючее), которые способны в результате экзотермических химических реакций образовывать высокотемпературные продукты сгорания (разложения). Эти продукты являются рабочим телом двигателя.

Каждая камера ЖРД состоит из камеры сгорания и сопла. В камере ЖРД первичная химическая энергия жидкого топлива преобразуется в конечную кинетическую энергию газообразного рабочего тела, в результате истечения которого создается реактивная сила камеры.

Отдельный турбонасосный агрегат ЖРД состоит из насосов и приводящей их в действия турбины. ТНА обеспечивает подачу компонентов жидкого топлива в камеры и газогенераторы ЖРД.

Газогенератор ЖРД является агрегатом, в котором основное или вспомогательное топливо преобразуется в продукты газогенерации, используемые в качестве рабочего тела турбины и рабочих тел системы наддува баков с компонентами ЖРТ.

Система автоматики ЖРД представляет собой совокупность устройств (клапанов, регуляторов, датчиков и т.п.) различных типов: электрического, механического, гидравлического, пневматического, пиротехнического и др. Агрегаты автоматики обеспечивают запуск, управление, регулирование и останов ЖРД.

Параметры ЖРД

Основными тяговыми параметрами ЖРД являются:


Реактивная сила ЖРД - R - результирующая газо- и гидродинамических сил, действующих на внутренние поверхности ракетного двигателя при истечении из него вещества;

Тяга ЖРД - Р - равнодействующая реактивной силы ЖРД (R) и всех сил давления окружающей среды, которые действуют на внешние поверхности двигателя за исключением сил внешнего аэродинамического сопротивления;

Импульс тяги ЖРД - I - интеграл от тяги ЖРД по времени его работы;

Удельный импульс тяги ЖРД - I у - отношение тяги (Р) к массовому расходу топлива () ЖРД.

Основными параметрами, которые характеризуют процессы, протекающие в камере ЖРД, служат давление (р), температура (Т) и скорость потока (W) продуктов сгорания (разложения) жидкого ракетного топлива. При этом особо выделяются значения параметров на входе в сопло (индекс сечения «с»), а также в критическом («*») и выходном («а») сечениях сопла.

Расчет значений параметров в различных сечениях тракта сопла ЖРД и определение тяговых параметров двигателя проводится по соответствующим уравнениям термогазодинамики. Приближенная методика подобного расчета рассмотрена в 4 разделе данного пособия.

  1. СХЕМА И ПРИНЦИП РАБОТЫ ЖРД «РД-214»

3.1. Общая характеристика ЖРД «РД-214»

Жидкостной ракетный двигатель «РД-214» применяется в отечественной практике с 1957 года. С 1962 года он устанавливается на 1-ой ступени многоступенчатых ракетах-носителях «Космос», с помощью которых на околоземные орбиты выведены многие спутники серий «Космос» и «Интеркомос».

ЖРД «РД-214» имеет насосную систему подачи топлива. Двигатель работает на высококипящем азотно-кислотном окислителе (растворе окислов азота в азотной кислоте) и углеводородном горючем (продуктах переработки керосина). Для газогенератора применяется специальный компонент – жидкая перекись водорода.

Основные параметры двигателя имеют следующие значения:

Тяга в пустоте Р п = 726 кН;

Удельный импульс тяги в пустоте I уп = 2590 Н×с/кг;

Давление газа в камере сгорания р к = 4,4 МПа;

Степень расширения газа в сопле e = 64

ЖРД «РД-214», (рис. 1) состоит из:

Четырех камер (поз. 6);

Одного турбонасосного агрегата (ТНА) (поз. 1, 2, 3, 4);

Газогенератора (поз. 5);

Трубопровода;

Агрегатов автоматики (поз. 7, 8)

ТНА двигателя состоит из насоса окислителя (поз. 2), насоса горючего (поз. 3), насоса перекиси водорода (поз. 4) и турбины (поз. 1). Ротора (вращающиеся части) насосов и турбины связаны одним валом.

Агрегаты и узлы, обеспечивающие подачу компонентов в камеру двигателя, газогенератор и турбину, объединяются в три отдельные системы – магистрали:

Систему подачи окислителя

Систему подачи горючего

Систему парогазогенерации перекиси водорода.


Рис.1. Схема жидкостного ракетного двигателя

1 – турбина; 2 – насос окислителя; 3 – насос горючего;

4 – насос перекиси водорода; 5 – газогенератор (реактор);

6 – камера двигателя; 7, 8 – элементы автоматики.

3.2. Характеристика агрегатов ЖРД «РД-214»

3.2.1. Камера ЖРД

Четыре камеры ЖРД связаны в единый блок по двум сечениям с помощью болтов.

Каждая камера ЖРД (поз. 6) состоит из смесительной головки и корпуса. Смесительная головка включает верхнее, среднее и нижнее (огневое) днища. Между верхним и средним днищами образована полость для окислителя, между средним и огневым – полость для горючего. Каждая из полостей с помощью соответствующих форсунок связана с внутренним объемом корпуса двигателя.

В процессе работы ЖРД через смесительную головку и ее форсунки осуществляется подача, распыл и смешение жидких компонентов топлива.

Корпус камеры ЖРД включает часть камеры сгорания и сопло. Сопло ЖРД сверхзвуковое, имеет сходящуюся и расходящуюся части.

Корпус камеры ЖРД двухстенный. Внутренняя (огневая) и наружная (силовая) стенки корпуса связаны между собой проставками. При этом, с помощью проставок, между стенками образованы каналы тракта жидкостного охлаждения корпуса. В качестве охладителя используется горючее.

Во время работы двигателя горючее подается в тракт охлаждения через специальные патрубки коллектора, расположенного на конечной части сопла. Пройдя тракт охлаждения, горючее поступает в соответствующую полость смесительной головки и через форсунки вводится в камеру сгорания. Одновременно через другую полость смесительной головки и соответствующие форсунки, в камеру сгорания поступает окислитель.

В объеме камеры сгорания происходит распыл, смешение и сгорание жидких компонентов топлива. В результате образуется высокотемпературное газообразное рабочее тело двигателя.

Затем в сверхзвуковом сопле осуществляется преобразование тепловой энергии рабочего тела в кинетическую энергию его струи, при истечении которой создается тяга ЖРД.

3.2.2. Газогенератор и турбонасосный агрегат

Газогенератор (рис. 1, поз. 5) является агрегатом, в котором жидкая перекись водорода в результате экзотермического разложения преобразуется в высокотемпературное парообразное рабочее тело турбины.

Турбонасосный агрегат обеспечивает напорную подачу жидких компонентов топлива в камеру и газогенератор двигателя.

ТНА состоит из (рис. 1):

Шнекоцентробежного насоса окислителя (поз. 2);

Шнекоцентробежного насоса горючего (поз. 3);

Центробежного насоса перекиси водорода (поз. 4);

Газовой турбины (поз. 1).

Каждый насос и турбина имеет неподвижный статор и вращающийся ротор. Роторы насосов и турбины имеют общий вал, состоящий из двух частей, которые связаны рессорой.

Турбина (поз. 1) служит приводом насосов. Основными элементами статора турбины являются корпус и сопловой аппарат, а ротора – вал и рабочее колесо с лопатками. В процессе работы, на турбину из газогенератора поступает перекисный парогаз. При прохождении парогаза через сопловой аппарат и лопатки рабочего колеса турбины, его тепловая энергия преобразуется в механическую энергию вращения колеса и вала ротора турбины. Отработанный парогаз собирается в выходном коллекторе корпуса турбины и сбрасывается в атмосферу через специальные отбросные сопла. При этом создается некоторая дополнительная тяга ЖРД.

Насосы окислителя (поз. 2) и горючего (поз. 3) шнекоцентробежного типа. Основными элементами каждого из насосов является корпус и ротор. Ротор имеет вал, шнек и центробежное колесо с лопатками. В процессе работы от турбины к насосу через общий вал подводится механическая энергия, обеспечивающая вращения ротора насоса. В результате воздействия лопаток шнека и центробежного колеса на прокачиваемую насосами жидкость (компонент топлива), механическая энергия вращения ротора насоса преобразуется в потенциальную энергию давления жидкости, что обеспечивает подачу компонента в камеру двигателя. Шнек перед центробежным колесом насоса устанавливается для предварительного повышения давления жидкости на входе в межлопаточные каналы рабочего колеса с целью предотвращения холодного вскипания жидкости (кавитации) и нарушения ее сплошности. Нарушения сплошности потока компонента может вызвать неустойчивость процесса сгорания топлива в камере двигателя, а, следовательно, и неустойчивость работы ЖРД в целом.

Для подачи в газогенератор перекиси водорода применяется центробежный насос (поз. 4). Сравнительно малый расход компонента создает условия бескавитационной работы центробежного насоса без установки перед ним шнекового преднасоса.

3.3. Принцип работы двигателя

Пуск, управление и остановка двигателя выполняется автоматически по электрическим командам с борта ракеты на соответствующие элементы автоматики.

Для начального воспламенения компонентов топлива используется специальное пусковое горючее, самовоспламеняющиеся с окислителем. Пусковое горючее первоначально заполняет небольшой участок трубопровода перед насосом горючего. В момент запуска ЖРД в камеру поступает пусковое горючее и окислитель, происходит их самовоспламенение и лишь затем в камеру начинают подаваться основные компоненты топлива.

В процессе работы двигателя окислитель последовательно проходит элементы и агрегаты магистрали (системы), включающей:

Разделительный клапан;

Насос окислителя;

Клапан окислителя;

Смесительную головку камеры двигателя.

Поток горючего протекает по магистрали, включающей:

Разделительные клапана;

Насос горючего;

Коллектор и тракт охлаждения камеры двигателя;

Смесительную головку камеры.

Перекись водорода и образующийся парогаз последовательно проходят элементы и агрегаты системы парогазогенерации, включающей:

Разделительный клапан;

Насос перекиси водорода;

Гидроредуктор;

Газогенератор;

Сопловой аппарат турбины;

Лопатки рабочего колеса турбины;

Коллектор турбины;

Отбросные сопла.

В результате непрерывной подачи турбонасосным агрегатом компонентов топлива в камеру двигателя, их сгорание с образованием высокотемпературного рабочего тела и истечения рабочего тела из камеры, создается тяга ЖРД.

Варьирование значения тяги двигателя в процессе его работы обеспечивается с помощью изменения расхода перекиси водорода, подаваемой в газогенератор. При этом изменяется мощность турбины и насосов, а, следовательно, и подача компонентов топлива в камеру двигателя.

Останов ЖРД производится в две ступени с помощью элементов автоматики. С основного режима двигатель сначала переводится на конечный режим работы с меньшей тягой и лишь затем выключается полностью.

  1. МЕТОДИКА ПРОВЕДЕНИЯ РАБОТЫ

4.1. Объем и порядок выполнения работы

В процессе выполнения работы последовательно выполняются следующие действия.

1) Изучается схема ЖРД «РД-214». Рассматривается назначение и состав ЖРД, конструкция агрегатов, принцип работы двигателя.

2) Производится измерение геометрических параметров сопла ЖРД. Находится диаметр входного («с»), критического («*») и выходного («а») сечений сопла (D с, D * , D а).

3) Рассчитывается значение параметров рабочего тела ЖРД во входном, критическом и выходном сечениях сопла ЖРД.

По результатам расчетов строится обобщенный график изменения температуры (Т), давления (р) и скорости (W) рабочего тела вдоль тракта сопла (L) ЖРД.

4) Определяются тяговые параметры ЖРД при расчетном режиме работы сопла ().

4.2. Исходные данные для расчета параметров ЖРД «РД-214»

Давление газа в камере (см. вариант)

Температура газов в камере

Газовая постоянная

Показатель изоэнтропы

Функция

Принимается, что процессы в камере протекают без потерь энергии. При этом коэффициенты потерь энергии в камере сгорания и сопле соответственно равны

Режим работы сопла расчетный (индекс «r »).

Посредством измерения определяются:

Диаметр критического сечения сопла ;

Диаметр выходного сечения сопла .

4.3. Последовательность расчета параметров ЖРД

А) Параметры в выходном сечении сопла («а») определяются в следующей последовательности.

1) Площадь выходного сечения сопла

2) Площадь критического сечения сопла

3) Геометрическая степень расширения газа



Кадры