Выбор схемы электроснабжения ремонтно-механического цеха. Электрооборудование механического цеха Схема электроснабжения механического цеха

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

ВВЕДЕНИЕ

Современная энергетика характеризуется нарастающей централизацией производства и распределения электроэнергии. Для обеспечении подачи электроэнергии от энергосистем к промышленным объектам, установкам, устройствам и механизмам служат системы электроснабжения состоящие из сетей напряжением до 1000В и выше и трансформаторных, преобразовательных и распределительных подстанций. Для передачи электроэнергии на большие расстояния используются сверхдальние линии электропередач (ЛЭП) с высоким напряжением: 1150кВ переменного тока и 1500кВ постоянного тока. В современных многопролетных цехах промышленности широко используют комплектные трансформаторные подстанции (КТП), комплектные распределительные установки (КРУ), силовые и осветительные шинопроводы, аппараты коммутации, защиты, автоматики, контроля, учета и так далее. Это создает гибкую и надежную систему электроснабжения, в результате чего значительно уменьшаются расходы на электрообеспечение цеха.

Целью настоящего дипломного проекта является проектирование электроснабжения ремонтно-механического цеха с минимальными капитальными затратами, эксплуатационными издержками и обеспечение высокой безопасности. Основными потребителями электрической энергии являются промышленные предприятия. Они расходуют более половины всей энергии, вырабатываемой в нашей стране.

Актуальность данного дипломного проекта заключается в том, что ввод в действие новых предприятий, расширение существующих, рост энерговооруженности, широкое внедрение различных видов электротехнологий во всех отраслях производств выдвигают проблему их рационального электроснабжения.

В настоящее время электроэнергетика России является важнейшим жизнеобеспечивающей отраслью страны. В ее состав входит более 700 электростанций общей мощностью 215,6 МВт.

Система распределения столь большого количества электроэнергии на промышленных предприятиях должна обладать высокими техническими и экономическими показателями и базироваться на новейших достижениях современной техники. Поэтому электроснабжение промышленных предприятий должно основываться на использовании современного конкурентоспособного электротехнического оборудования.

Основываясь на аргументации об актуальности выбранной темы, можно определить целевую ориентацию работы.

Цель дипломного проекта: дать краткую характеристику ремонтно-механическому цеху по электрическим нагрузкам, режиму работы, роду тока, питающему напряжению и сделать расчет электрических нагрузок для выбора электрооборудования подстанции.

Ремонтно-механический цех (РМЦ) предназначен для ремонта и настройки электромеханического оборудования выбывающего из строя. Он является одним из цехов металлургического завода, выплавляющего и обрабатывающего металл. РМЦ имеет два участка, в которых установлено необходимое для ремонта электрооборудование: токарные, строгальные, фрезерные, сверлильные станки и др. В цехе предусмотрены помещения для трансформаторной подстанции (ТП), вентиляторной, инструментальной, складов, сварочных постов, администрации и пр. РМЦ получает ЭСН от главной понизительной подстанции (ГПП). Расстояние от ГПП до ТП - 3,3 км, а от энергосистемы (ЭСН) до ГПП - 14 км. Напряжение на ГПП - 10кВ. Количество смен - 2. Потребители цеха имеют 2 и 3 категорию надежности ЭСН.

1. ОБЩАЯ ЧАСТЬ

1.1 Краткая характеристика техноло гического процесса производства

Ремонтно-механический цех

Ремонтно-механический цех является структурным подразделением предприятия, возглавляется начальником цеха и подчиняется главному механику.

Ремонтно-механический цех выполняет работы по обеспечению нормального функционирования ремонтно-эксплуатационной службы, связанные с ремонтом, модернизацией оборудования и форм, изготовлением запасных частей, производимых в соответствии с утвержденными годовыми, месячными планами-графиками.

Начальник ремонтно-механического цеха назначается и увольняется директором.

На должность начальника ремонтно-механического цеха назначаются лица с высшим техническим образованием и стажем работы на инженерно-технических должностях в области ремонта оборудования не менее трех лет или средним специальным образованием и стажем работы на руководящих должностях по ремонту оборудования не менее пяти лет.

Начальник ремонтно-механического цеха в своей работе руководствуется приказами и инструкциями министерства, управления, приказами директора, распоряжениями главного инженера и главного механика, а также руководствами по ремонту и настоящим положением.

Начальник ремонтно-механического цеха:

осуществляет руководство производственно-хозяйственной деятельностью цеха по ремонту, модернизации оборудования и форм, изготовлению нестандартного оборудования и инструмента, а также изготовлению запасных частей и техническому обслуживанию оборудования и форм, зданий и сооружений ремонтно-механического цеха;

участвует в разработке текущих и перспективных планов ремонта оборудования и форм, зданий, сооружений, а также рабочих планов по отдельным службам, организует разработку и доведение до исполнителей заданий и графиков ремонта;

обеспечивает выполнение плановых заданий в установленные сроки, ритмичную работу цеха, повышение производительности труда ремонтных рабочих, снижение стоимости ремонта при высоком качестве ремонтных работ, эффективное использование основных и оборотных фондов, соблюдение правильного соотношения между ростом производительности труда и заработной платы;

проводит работу по внедрению научной организации труда, совершенствованию организации производства, его технологии, механизации и автоматизации производственных процессов, предупреждению брака, повышению качества продукции, использованию резервов повышения производительности труда и рентабельности производства, снижению трудоемкости и себестоимости продукции;

организует планирование, учет и составление отчетности о производственной деятельности, работу по развитию и укреплению хозяйственного расчета, улучшению нормирования труда, правильному применению форм и систем заработной платы и материального стимулирования, обобщению и распространению передовых методов и приемов труда, развитию рационализации и изобретательства;

обеспечивает технически правильную эксплуатацию оборудования и других основных средств и выполнение графиков их ремонта, безопасные и здоровые условия труда, а также своевременное представление работающим льгот по условиям труда;

совместно с общественными организациями организует социалистическое соревнование, проводит воспитательную работу в коллективе.

1.2 Характеристики потребителей электроэнергии, категории электроснабжения

Характеристики потребителей электроэнергии и определение категории электроснабжения. Электроснабжение объекта может осуществляться от собственной электростанции, энергетической системы при наличии собственной электростанции.

Требования, представляемые к надёжности электроснабжения от источников питания, определяются потребляемой мощностью объекта и его видом.

Приёмники электрической энергии в отношении обеспечения надёжности электроснабжения разделяются на несколько категорий. Первая категория - электроприёмники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный экономический ущерб, повреждение дорогостоящего оборудования, расстройство сложного технологического процесса, массовый брак продукции. Из состава электроприёмников первой категории выделяется особая группа (нулевая категория) электроприёмников, бесперебойная работа которых не обходима для безаварийного останова производства с целью предотвращения угрозы для жизни людей, взрывов, пожаров и повреждения дорогостоящего оборудования.

Вторая категория - электроприёмники, перерыв электроснабжения которых приводит к массовым недоотпускам продукции, массовым простоям рабочих, механизмов. Допустимый интервал продолжительности нарушения электроснабжения для электроприёмников второй категории не более 30 минут.

Третья категория - все остальные электроприёмники, не подходящие под определение первой и второй категорий. Электроприёмники первой категории должны обеспечиваться электроэнергией от двух независимых источников питания, при отключении одного из них переключение на резервный должно осуществляться автоматически. Согласно определению ПУЭ независимыми источниками питания являются такие, на которых сохраняется напряжение при исчезновении его на других источниках, питающих эти электроприёмники.

Согласно ПУЭ к независимым источникам могут быть отнесены две секции или системы шин одной или двух электростанций или подстанций при соблюдении следующих условий: - каждая эта секция или система шин питается от независимых источников. - секции шин не связаны между собой или же имеют связь, автоматически отключающуюся при нарушении нормальной работы одной из секций шин. Для электроснабжения электроприёмников особой группы должен предусматриваться дополнительный третий источник питания, мощность которого должна обеспечивать безаварийную остановку процесса.

Электроприёмники второй категории рекомендуется обеспечивать от двух независимых источников питания, переключение можно осуществлять не автоматически. Электроснабжение электроприёмников третьей категории может выполняться от одного источника при условии, что перерывы электроснабжения, необходимые для ремонта и замены поврежденного оборудования, не превышают одних суток. Электрооборудование ремонтно-механического цеха относится ко 2 и 3 категориям и могут питаться от одного источника, при условии, что перерывы электроснабжения не превышает одних суток. Выбор рода тока, напряжения и схемы внутреннего электроснабжения. Назначение электрических сетей. Электрические сети служат для передачи и распределения электрической энергии к цеховым потребителям промышленных предприятий.

Потребители энергии присоединяются через внутрицеховые подстанции и распределительные устройства при помощи защитных и пусковых аппаратов.

Электрические сети промышленных предприятий выполняются внутренними (цеховыми) и наружными. Наружные сети напряжения до 1кВ имеют весьма ограниченное распространение, т.к. на современных промышленных предприятиях электропитание цеховых нагрузок производится от внутрицеховых или пристроенных трансформаторных подстанций.

Выбор электрических сетей радиальные схемы питания характеризуются тем, что от источника питания, например от трансформаторной подстанции, отходят линии, питающих непосредственно мощные электроприёмники или отдельные распределительные пункты, от которых самостоятельными линиями питаются более мелкие электроприёмники.

Радиальные схемы обеспечивают высокую надежность питания отдельных потребителей, т.к. аварии локализуются отключением автоматического выключателя поврежденной линии и не затрагивают другие линии. Все потребители могут потерять питание только при повреждении на сборных шинах КТП, что маловероятно. Вследствие достаточно надёжной конструкции шкафов этих КТП. Магистральные схемы питания находят широкое применение не только для питания многих электроприёмников одного технологического агрегата, но также большого числа сравнения мелких приёмников, не связанных единым технологическим процессом.

Магистральные схемы позволяют отказаться от применения громоздкого и дорогого распределительного устройства или щита. В этом случае возможно применение схемы блока трансформатор-магистраль, где в качестве питающей линии применяются токопроводы (шинопроводы), изготовляемые промышленностью.

Магистральные схемы, выполненные шинопроводами, обеспечивают высокую надёжность, гибкость и универсальность цеховых сетей, что позволяет технологам перемещать оборудование внутри цеха без существенного монтажа электрических сетей. В связи с равномерностью распределения потребителей внутри ремонтно-механического цеха, а также низкой стоимости и удобстве в эксплуатации, выбирается магистральная схема питания.

1 .3 Выбор рода, напряжения

Трёхфазные сети выполнются трёхпроводными на напряжение свыше 1000В и четырёхпроводными - до 1000В. Нулевой провод в четырёхпроводной сети обеспечивает равенство фазных напряжений при неравномерной загрузке фаз от однофазных электроприёмников.

Трёхфазные сети на напряжение 380/220В (в числители - линейное, в знаменатели - фазное) позволяют питать от одного трансформатора трёх - и однофазные установки. Электрические сети выполняются в основном по системе трёхфазного переменного тока, что является наиболее целесообразным, поскольку при этом может производиться трансформация электроэнергии. При большом количестве однофазных электроприёмников от трёхфазных сетей осуществляются однофазные ответвления.

1. 4 Классификация помещений по взрыво - и пожарной безопасности

Предусматриваемые при проектировании зданий и установок противопожарные мероприятия зависят прежде всего от пожарной или взрывной опасности размещенных в них производств и отдельных помещений. Помещения и здания в целом делятся по степени пожаро- или взрывоопасности на пять категорий в соответствии с ОНТП-24.

· Категория А - это помещения, в которых применяются легковоспламеняющиеся жидкости с температурой вспышки паров 28 o С и ниже или горючие газы в таком количестве, что они могут образовать взрывоопасную смесь с воздухом, при взрыве которой создастся давление более 5 кПа (например, склады бензина).

· Категория Б - это помещения, в которых выделяются переходящие во взвешенное состояние горючие волокна или пыль, а также легковоспламеняющиеся жидкости с температурой вспышки паров более 28 o С в таком количестве, что образуемая ими с воздухом смесь при взрыве может создать давление более 5 кПа (цеха приготовления сенной муки, выбойные и размольные отделения мельниц и крупорушек, мазутное хозяйство электростанций и котельных).

· Категория В - это помещения, в которых обрабатывают или хранят твердые горючие вещества, в том числе выделяющие пыль или волокна, неспособные создавать взрывоопасные смеси с воздухом, а также горючие жидкости (лесопильные, столярные и комбикормовые цехи; цехи первичной сухой обработки льна, хлопка; кормокухни, зерноочистительные отделения мельниц; закрытые склады угля, склады топливно-смазочных материалов без бензина; электрические РУ или подстанции с трансформаторами).

· Категория Г - это помещения, в которых сжигают топливо, в том числе газ, или обрабатывают несгораемые вещества в горячем, раскаленном или расплавленном состоянии (котельные, кузницы, машинные залы дизельных электростанций).

· Категория Д - это помещения, в которых негорючие вещества находятся в практически холодном состоянии (насосные оросительные станции; теплицы, кроме отапливаемых газом, цехи по переработке овощей, молока, рыбы, мяса).

Категории производств по пожарной опасности в большой степени определяют требования к конструктивным и планировочным решениям зданий и сооружений, а также другим вопросам обеспечения пожаро- и взрывобезопасности. Они отвечают нормам технологического проектирования или специальным перечням, утверждаемым министерствами (ведомствами). Руководством при этом могут служить "Указания по определению категории производств по взрывной, взрывопожарной и пожарной опасности" (СН 463-74) и "Методика категорирования производств химической промышленности по взрывной, взрывопожарной и пожарной опасности".

Условия возникновения пожара в зданиях и сооружениях во многом определяются степенью их огнестойкости (способность здания или сооружения в целом сопротивляться разрушению при пожаре). Здания и сооружения по степени огнестойкости подразделяются на пять степеней (I, II, III, IV и V). Степень огнестойкости здания (сооружения) зависит от возгораемости и огнестойкости основных строительных конструкций и от распространения огня по этим конструкциям.

По возгораемости строительные конструкции подразделяются на несгораемые, трудносгораемые и сгораемые. Несгораемые конструкции выполнены из несгораемых материалов, трудносгораемые - из трудносгораемых или из сгораемых, защищенных от огня и высоких температур несгораемыми материалами (например, противопожарная дверь, выполненная из дерева и покрытая листовым асбестом и кровельной сталью).

Огнестойкость строительных конструкций характеризуется их пределом огнестойкости, под которым понимают время в часах, по истечении которого они теряют несущую или ограждающую способность, т. е. не могут выполнять свои обычные эксплуатационные функции.

Потеря несущей способности означает обрушение конструкции.

Потеря ограждающей способности - прогрев конструкции при пожаре до температур, превышение которых может вызвать самовоспламенение веществ, находящихся в смежных помещениях, или образование в конструкции сквозных трещин или отверстий, через которые могут проникать продукты горения в соседние помещения.

Пределы огнестойкости конструкций устанавливают опытным путем.

Для этого образец конструкции, выполненный в натуральную величину, помещают в специальную печь и одновременно воздействуют на нее с необходимой нагрузкой.

Время от начала испытания до появления одного из признаков потери несущей или ограждающей способности и считается пределом огнестойкости. Предельным прогревом конструкции является повышение температуры на необогреваемой поверхности в среднем больше чем на 140 o С или в какой-либо точке поверхности выше, чем на 180 o С по сравнению с температурой конструкции до испытания, или больше чем на 220 o С независимо от температуры конструкции до испытания.

Рисунок 1 - План расположения электрооборудования ремонтно-механического цеха

Наименьшим пределом огнестойкости обладают незащищенные металлические конструкции, а наибольшим - железобетонные.

Требуемая степень огнестойкости производственных зданий промышленных предприятий зависит от пожарной опасности размещаемых в них производств, площади этажа между противопожарными стенами и этажности здания. Требуемая степень огнестойкости должна соответствовать фактической степени огнестойкости, которая определяется по таблицам СНиП П-2-80,содержащим сведения о пределах огнестойкости строительных конструкций и пределах распространения по ним огня.

Например, основные части зданий I и II степени огнестойкости являются несгораемыми и различаются только пределами огнестойкости строительных конструкций. В зданиях I степени распространение огня по основным строительным конструкциям не допускается совсем, а в зданиях II степени максимальный предел распространения огня, составляющий 40 см, допускается только для внутренних несущих стен (перегородок). Основные части зданий V степени являются сгораемыми.

Пределы огнестойкости и распространения огня для них не нормируются.

2. СПЕЦИАЛЬНАЯ ЧАСТЬ

2 .1 Исходные данные для расчета

2. Токи короткого замыкания на шинах ГПП 10,5 кА.

3. Длина кабельной линии от ГПП до ТП 3,3 км.

5. Установленная мощность освещения 90 кВт.

6. Данные электроприемников цеха приведены в таблице 1.

Таблица 2.1

Данные электроприемников цеха

Ном. мощность, кВт

Станок токарно-карусельный

Станок токарный

Станок фрезерный

Станок сверлильный

Печь индукционная

Вентилятор

Сварочный выпрямитель

Мостовой кран при ПВ = 25%

2.2 Расчет электрических нагрузок

Расчет электрических нагрузок является первым и одним из ответственных этапов проектирования, т.к. на основании результатов такого расчета в дальнейшем производится выбор мощности компенсирующих устройств, силовых трансформаторов, преобразователей, электрооборудования подстанций, определяются сечения токоведущих частей (проводов, кабелей, шин), рассчитывается защита электроустановок и т.д. Ошибок при расчете не должно быть. Завышение расчетной мощности приведет к большим дополнительным затратам; занижение - к выводу из строя оборудования, ложным срабатываниям защиты и т.п. Правильное определение расчетных электрических нагрузок дает гарантию того, что оборудование будет работать экономично, надежно, а потери электроэнергии будут минимальными.

2 .2. 1 Расчет электрических нагрузок методом упорядоченных диаграмм

Этот метод позволяет определить расчетные электрические нагрузки с наименьшей погрешностью, поэтому является основным для расчета нагрузок. Номинальная мощность электроприемников без учета осветительной нагрузки (по данным табл. 2.1)

При наличии двигателей повторно-кратковременного режима работы их номинальная мощность приводится к длительному режиму

где P пасп - паспортная мощность (по заданию), кВт;

ПВ - продолжительность включения, в относительных единицах.

Общая номинальная мощность электроприемников цеха

Средние активная и реактивная мощности за максимально загруженную смену

где К и - коэффициент использования группы электроприемников одного режима работы;

P н - номинальная мощность электроприемников, кВт.

Выписываем из приложения 1.1 значения К и и cos в таблице 2.2

Таблица 2.2

Значения К и и cos

Наименования электроприемников

Кол-во. шт

Мощность, кВт

Станок токарно-карусельный

Станок токарный

Станок фрезерный

Станок сверлильный

Печь индукционная

Вентилятор

Сварочный выпрямитель

Мостовой кран

Значения tg ц определяются по формуле

Групповой коэффициент использования

Эффективное число электроприемников n э - это такое число однородных по режиму работы электроприемников одинаковой мощности, которое дает ту же величину расчетной нагрузки, что и группа электроприёмников, различных по режиму работы и мощности.

По диаграммам или табл. 2.13 определяем коэффициент максимума.

При к и = 0,4 и n э = 14коэффициент максимума к m = 1,32 согласно .

Расчетная мощность осветительной нагрузки

где Кс.о. - коэффициент спроса осветительной нагрузки;

Рн.о. - установленная мощность электрического освещения, кВт

Согласно Кс.о. = 0,85.

По заданию

Расчетная активная и реактивная нагрузки заданной группы электроприемников

2. 3 Выбор компенсирующих устройств

Если компенсирующие устройства не установлены, то вся расчётная мощность передаётся к электроприемникам от электрической станции

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2 - Передача электроэнергии без применения КУ

Если к шинам подстанции или зажимам группы электроприемников подключить компенсирующие устройства общей мощностью Q ку, то от электростанции будет передаваться меньшая реактивная мощность, и следовательно меньшая полная мощность.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.1 -электроэнергии с использованием КУ

С уменьшением передаваемой полной мощности от значения S р до S р " увеличивается коэффициент мощности cos.

На шинах подстанции коэффициент мощности должен находиться в пределах cos н = 0,92...0,95. Если расчетный коэффициент мощности cos р меньше нормативного cos н, необходимо установить компенсирующее устройство.

Мощность компенсирующих устройств:

tg р - соответствует расчетному коэффициенту мощности;

tg н - соответствует нормативному коэффициенту мощности.

При выборе мощности компенсирующих устройств должен быть предусмотрен 10-15% резерв для обеспечения допустимых отклонений напряжения в послеаварийных режимах.

В сетях низкого напряжения не рекомендуется дробить необходимую мощность конденсаторных батарей до величины менее 30 квар из-за увеличения удельных затрат на отключающую аппаратуру, измерительные приборы и прочее оборудование на один установленный киловольт-ампер батареи.

2. 3.1 Расчет компенсирующих устройств

Расчетный коэффициент мощности

Расчетный коэффициент мощности меньше нормативного, поэтому необходимо установить компенсирующие устройства.

Мощность компенсирующих устройств

Из приложения №2 выбираем для двух секций шин НН две батареи статических конденсаторов типа УКМ-0,4-20-180УЗ мощностью по 180 квар. каждая.

Передаваемая от электростанции реактивная мощность

Передаваемая от электростанции полная мощность

Проверка:

Принимаем к установке нерегулируемые батареи статических конденсаторов со схемой присоединения по рис. 2.3.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.2 Схема присоединения конденсаторных батарей на U = 0,38-0,66 кВ через рубильник и предохранитель

2.4 Выбор числа и мощности силовых трансформаторов

Выбор числа и мощности силовых трансформаторов производится в следующем порядке:

1. Определяется число трансформаторов, исходя из требуемой степени надёжности электроснабжения, т.е. с учётом категории электроприемников.

2. Намечаются варианты мощностей силовых трансформаторов, исходя из расчетной мощности подстанции и ряда номинальных мощностей трансформаторов (табл.2.3).

Таблица 2.3

Номинальные мощности трансформаторов

3. Варианты сравниваются по техническим показателям с учетом допустимой перегрузки трансформаторов в рабочем и аварийном режимах.

4. Определяются экономические показатели по вариантам. К исполнению применяется наиболее экономичный вариант.

2.4.1 Выбор числа и мощности силовых трансформаторов

Нагрузки ремонтно-механического цеха относятся к потребителям II категории. Поэтому на подстанции необходимо установить два силовых трансформатора.

Потери активной мощности в трансформаторах

Потери реактивной мощности

Потери полной мощности

Полная расчетная мощность, передаваемая от ГПП до ТП цеха

Мощность трансформаторов

Значение К з принимается в зависимости от категории электроприемников по степени надежности электроснабжения. Для цехов с преобладающей нагрузкой II категории при двухтрансформаторной подстанции с возможным резервированием -.

Принимаем значение К з = 0,75

Мощность одного трансформатора

где n - выбранное количество трансформаторов.

Выбираем два трансформатора типа ТМ-400/10 мощностью 400кВА, имеющего технические данные, приведенные в таблице 2.4.

Таблица 2.4

Технические данные трансформатора

Проверяем выбранные трансформаторы по действительному коэффициенту загрузки:

Кздейст? Кзприн

2.5 Выбор схемы электрических соединений подстанции

Схемы цеховых ТП определяются характеристикой электроприемников и схемами межцехового и внутрицехового распределения, энергии.

Схемы с глухим присоединением трансформатора к питающей линии (рис. 4.1) применяются:

* при отсутствии приемников напряжением свыше 1000В;

* при радиальном питании по схеме блока линия - трансформатор.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.4 Схема глухого присоединения трансформатора к питающей линии

Коммутационные аппараты на вводе высокого напряжения необходимо устанавливать в следующих случаях:

* при питании от источника питания, находящегося в ведении другой эксплуатирующей организации.

* при удалении источника питания от подстанции на 3-5 км;

* при питании от воздушных линий;

* если отключающий аппарат нужен по условиям защиты, например, для воздействия газовой защиты на выключатель нагрузки (рис. 2.5);

* в магистральных схемах электроснабжения разъединитель или выключатель нагрузки с предохранителями устанавливают с целью селективного отключения трансформатора при его повреждении (рис. 2.6);

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.5 Схема присоединения трансформатора к линии через выключатель нагрузки

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.6 Схема присоединения трансформатора к магистральной линии

* когда требуется более надежное электроснабжение, когда часто отключают и включают трансформаторы подстанции; когда токи короткого замыкания велики и коммутационной способности предохранителей не хватает для отключения при коротком замыкании.

Не секционированная система шин применяется при питании по одной линии и неответственных потребителей III категории надёжности (рис. 4.1, 4.2, 4.3, 4.4).

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок. 2.7 - Схема подключения трансформатора к линии через масляный выключатель

Наличие потребителей II категорий требует секционирования шин нормально разомкнутым выключателем или разъединителем (рис. 4.5). Каждая секция питается по отдельной линии. Секционный аппарат включается при исчезновении напряжения на шинах и отключении питающей линии ВН.

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.8 - Схема электрических соединений подстанции ремонтно-механического цеха

2.6 Расчет высоковольтной питающей линии

Проводники электрических сетей от проходящего по ним тока, согласно закону Джоуля-Ленца, нагреваются. Чрезмерно высокая температура нагрева проводника может привести к преждевременному износу изоляции, ухудшению контактных соединений и пожарной опасности. Поэтому устанавливаются предельно допустимые значения температуры нагрева проводников в зависимости от марки и материала изоляции проводника. Длительно протекающий по проводнику ток, при котором устанавливается наибольшая длительно-допустимая температура нагрева проводника, называется предельно-допустимым током по нагреву I доп. Величина его зависит как от марки провода или кабеля, так и от условий прокладки и температуры окружающей среды. Для выбора сечений жил кабелей и проводов по нагреву определяют расчетный ток и по таблицам приведенным в , , определяют стандартное сечение, соответствующее ближайшему большему току.

Условие выбора сечений

где I р - ток расчётный, А;

К попр - поправочный коэффициент на условия прокладки.

При проложенных рядом двух кабелях, значения К попр принимаются согласно

Значения К попр на температуру окружающей среды при температуре земли, отличной от +15°С и при температуре воздуха, отличной от +25°С, принимаются по .

2. 6 .1 Расчет высоковольтной питающей линии

Ток, протекающий по кабельной линии в нормальном режиме

где К з - коэффициент загрузки трансформатора.

U н - номинальное напряжение на высокой стороне, кВ;

S Т - мощность трансформатора, кВА.

С учетом расширения мощности цеха принимаем расчетный ток равным

По таблице согласно при принимаем трехжильный силовой кабель на с алюминиевыми жилами марки АСБ - 3х16 (A - алюминиевая жила; бумажная изоляция; С - свинцовая оболочка; Б - бронированный двумя стальными лентами с наружным джутовым покровом).

2.7 Расчет токов короткого замыкания

Составляем расчетную схему (рис. 2.9).

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок 2.9 - Расчетная схема

По расчетной схеме составляем схему замещения (рис. 2.10).

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок. 2.10-Схема замещения

Выбираем базисные условия:

Для точки К 1

Для точки К 2

Для точки К 1

Для точки К 2

Определяем сопротивления элементов сети.

Мощность системы

Сопротивление системы в относительных единицах

Сопротивления кабельной линии в относительных единицах

При мощности трансформаторов учитывается активное сопротивление

где r - относительное активное сопротивление обмоток трансформатора, отнесенное к номинальной мощности.

Относительное активное сопротивление обмоток трансформатора (при мощности трансформаторов)

В нашем случае номинальная мощность трансформатора составляет 400кВА, поэтому активное сопротивление трансформатора учитывается.

Результирующие сопротивления до точки К 1

Результирующие сопротивления до точки К 2

Токи и мощность короткого замыкания для точки К 1

Действующее значение начального тока короткого замыкания

При () периодическая составляющая тока КЗ не изменяется и действующие значения

Ударный ток короткого замыкания

где К у - ударный коэффициент.

где T а - постоянная времени.

Мощность короткого замыкания

Определяем токи и мощность короткого замыкания для точки К 2

Первоначальный ток в момент КЗ

По таблице 2.5 принимаем для стороны НН трансформатора мощностью 400кВА,

Таблица 2.5

Значения Ку

Данные расчетов сведены в таблице 2.6.

Таблица 2.6

Данные расчетов сведены

2.8 Выбор электрооборудования подстанции

Общим требованием к электрооборудованию подстанции является обеспечения нормального режима работы и устойчивость его к воздействиям токов КЗ.

2.8 .1 Выбор электрооборудования подстанции на стороне ВН

Проверка сечения кабелей на действие токов КЗ

Выбранные в разделе 5 высоковольтные питающие линии необходимо проверить на термическое действие токов КЗ.

Минимальное сечение кабеля на термическую устойчивость для трехфазного К.З.

где С - коэффициент; для кабелей напряжением 6-10 кВ с медными жилами С = 140, с алюминиевыми жилами С = 95, для алюминиевых шин С = 95, для медных шин С = 170;

t пр - приведенное время, с.

Приведенное время

t пр = t пр.п. +t пр.а. , (2.31)

где t пр.п. - время периодической слагающей тока КЗ, с;

t пр.а. - время апериодической слагающей тока КЗ, с;

Величина t пр.п. определяется по кривым t пр.п. = () в зависимости от действительного времени протекания тока КЗ t.

t = t з +t выкл (2.32)

где t з - время действия защиты, с;

t выкл - время действия выключающей аппаратуры, с;

По заданию время действия защиты (по условиям селективности) t з = 0,5 с, время действия масляных выключателей ГПП t выкл = 0,14 с.

t = 0,5 + 0,14 = 0,64 с

и t = 0,64 с t пр.п. = 0,5 с согласно .

Время апериодической слагающей тока КЗ при действительном времени t < 1 с не учитывается.

В общем случае

В нашем случае

t пр = t пр.п. = 0,5 с

Для кабеля АСБ-3х16 коэффициент С = 95, при I = 0,85кА = 850А

Выбранное сечение жил кабеля 16 мм 2 >6,35 мм 2 , следовательно, кабель АСБ - 3х16 удовлетворяет расчетному току термической устойчивости к токам КЗ.

2.8 .2 Выбор выключателей нагрузки

В разделе 4 принято решение об установке со стороны ВН подстанции выключателей нагрузки с предохранителями.

Условия и данные для выбора приведены в таблице 2.7.

Таблица 2.7

Данные выключателей нагрузки с предохранителями

Выбираем выключатель нагрузки ВНПу-10/400-10зУЗ согласно с предохранителями ПКТ101-10-31,5-12,5УЗ с номинальным током патрона I н.п = 31,5А > I р = 24А и номинальным током отключения I откл = 12,5кА. При выборе предохранителей по отключающей способности должны быть выполнены условия и.

В нашем случае

2.8 .3 Выбор электрооборудования подстанции на стороне НН

Выбор шин

Шины РУ выбираются по расчетному току и проверяются на режим короткого замыкания.

Условия выбора шин

где I н - длительно допустимый ток нагрузки шин, А

где k 1 - поправочный коэффициент, при расположении шин горизонтально k 1 = 0,92;

k 2 - коэффициент для многополосных шин;

k 3 - поправочный коэффициент при температуре окружающей среды, отличной от +25C.

Расчетный ток по формуле (5-2)

По выбираем шины алюминиевые окрашенные однополосные размером 60х8мм, имеющие допустимый ток 1025А при расположении их вертикально.

При расположении шин плашмя

Для проверки шин на динамическую стойкость определяем расчетную нагрузку

где l - расстояние между опорными изоляторами, см;

а - расстояние между осями фаз, см.

По заданию принято l = 50см; а = 10см.

Момент сопротивления шин при установке их плашмя

Размещено на http://www.Allbest.ru/

Размещено на http://www.Allbest.ru/

Рисунок. 2.11 - Расположение шин плашмя

Максимальный изгибающий момент при числе пролетов свыше 2-х

Напряжение на изгиб

Условие проверки шин на динамическую устойчивость:

Наибольшее допустимое напряжение на изгиб G доп составляет

для медных шин 130МПа;

для алюминиевых шин 65МПа.

5,5МПа < 65МПа, следовательно по электродинамической устойчивости шины проходят.

Для проверки шины на термическую устойчивость определяют минимальное сечение по формуле

Сечение выбранных шин составляет 50х5 = 250 мм 2 >71 мм 2 , следовательно, по термической стойкости шина проходит.

2.8 .4 Выбор автоматических выключателей

Автоматические выключатели выбирают по номинальному напряжению, номинальному току и коммутационной способности.

Выбираем трехполюсный автоматический выключатель типаВА53-41.

Таблица 2.8

Данные автоматического выключателя

2. 8 .5 Выбор рубильников

Рубильники выбирают по номинальным напряжению и току и проверяют на электродинамическую и термическую стойкость к токам КЗ.

Выбираем рубильник трехполюсный серии Р2115.

Таблица 2.9

Данные рубильника

Для рубильника Р2115 по I t расч = 500 кА при t к = 1 с.

3. МОНТАЖ ЭЛЕКТРООБОРУДОВАНИЯ

3.1 Назначение, устройство, классификация электрических аппаратов

Электрическими аппаратами (ЭА) называются электротехнические устройства, предназначенные для управления потоками энергии и информации, а также режимами работы, контроля и защиты технических и электротехнических систем и их компонентов.

Одним из основных признаков классификации ЭА является их рабочее (номинальное) напряжение, по которому они делятся на аппараты низкого (до 1000 В) и высокого (свыше 1000 В) напряжения.

Аппараты низкого напряжения выполняют в основном функции коммутации и защиты электрических цепей и устройств (автоматические выключатели, контакторы, пускатели, реле, рубильники и пакетные выключатели, кнопки управления, тумблеры и другие аппараты) и регулирования параметров технических объектов (стабилизаторы, регуляторы напряжения, мощности и тока, усилители, датчики различных переменных).

Аппараты высокого напряжения подразделяются на коммутационные (выключатели, выключатели нагрузки, разъединители), измерительные (измерительные трансформаторы тока и напряжения, делители напряжения), компенсирующие (шунтирующие реакторы), комплектные распределительные устройства.

По своему исполнению аппараты подразделяются на электромеханические, статические и гибридные. Основным признаком электромеханических аппаратов является наличие в них подвижных частей, например контактной системы у коммутационных аппаратов. Статические аппараты строятся с использованием полупроводниковых и магнитных элементов и устройств (диодов, транзисторов, тиристоров и других полупроводниковых приборов, магнитных усилителей и др.). Гибридные аппараты представляют собой комбинацию электромеханических и статических аппаратов. Электрические аппараты классифицируются также:

* по значению рабочих токов -- аппараты слаботочные (до 5А) и сильноточные (свыше 5А);

* по роду тока -- аппараты постоянного и переменного тока;

* по частоте рабочего напряжения -- аппараты с нормальной (до 50 Гц) и повышенной (от 400 до 10 ООО Гц) частотой напряжения.

К аппаратам ручного управления относятся командные маломощные устройства -- кнопки, ключи управления и различные командоаппараты (командоконтроллеры), с помощью которых осуществляется коммутация электрических цепей управления и подача команд управления на ЭП.

Кнопки управления. Кнопки управления различаются по размерам -- нормальные и малогабаритные, по числу замыкающих и размыкающих контактов, по форме толкателя, по величине и роду тока и напряжения, по степени защиты от воздействия окружающей среды. Две, три или более кнопок, смонтированных в одном корпусе, образуют кнопочную станцию. На рис. 3.1, а показано условное изображение одноцепных кнопок с замыкающим (кнопка SBI) и размыкающим (кнопка SB2) контактами. Контакты кнопок и других электрических аппаратов на схемах изображаются в так называемом нормальном состоянии, когда на них не оказывается механического, электрического, магнитного или какого-либо другого воздействия. Двухцепные кнопки имеют обе пары показанных контактов с единым приводом.

Рисунок 3. Условные изображения: а -- кнопки управления; б -- ключ управления; в -- электрические контакты

Ключи управления (универсальные переключатели). Эти аппараты имеют два или более фиксированных положений рукоятки управления и несколько замыкающих и размыкающих контактов. На рис. 3.1, б показан переключатель, имеющий три фиксированных положения рукоятки. В среднем положении рукоятки (позиция 0) замкнут контакт SM1, что обозначается точкой на схеме, а контакты SM2 и SM3 разомкнуты. В положении 1 ключа замыкается контакт SM2 и размыкается SM1, в положении 2 -- наоборот. На рис. 3.1, в показаны замыкающий и размыкающий контакты.

Командоконтролллеры (командоаппараты) представляют собой аппараты для коммутации нескольких маломощных (ток нагрузки до 16 А) электрических цепей с управлением от рукоятки или педали с несколькими положениями. Их электрическая схема изображается аналогично схеме ключей управления и переключателей.

К силовым коммутационным аппаратам с ручным управлением относят рубильники, пакетные выключатели, контроллеры и автоматические выключатели.

Рубильники представляют собой простые коммутационные аппараты, предназначенные для неавтоматического нечастого замыкания и размыкания силовых электрических цепей постоянного и переменного тока напряжением до 500В и током до 5000А. Они различаются по величине коммутируемого тока, количеству полюсов (коммутируемых цепей), виду привода рукоятки и числу ее положений (два или три).

Пакетные выключатели представляют собой разновидность рубильников, отличающихся тем, что их контактная система набирается из отдельных пакетов по числу полюсов (коммутируемых цепей). Пакет состоит из изолятора, в пазах которого находятся неподвижный контакт с винтовыми выводами для подключения проводов и пружинный подвижный контакт с устройством искрогашения.

Разновидностью рубильников являются переключатели-разъединители с различным типом привода -- рычажным, с центральной рукояткой, с приводом от маховика или штанги.

Контроллеры являются многопозиционными электрическими аппаратами с ручным или ножным приводом для непосредственной коммутации силовых цепей, в основном электрических двигателей. Силовые контроллеры бывают двух видов: кулачковые и магнитные.

Кулачковые контроллеры характеризуются тем, что размыкание и замыкание их контактов обеспечивается смонтированными на барабане кулачками, поворот которых осуществляется с помощью рукоятки, маховичка или педали. За счет профилирования кулачков обеспечивается необходимая последовательность коммутации контактных элементов.

Магнитные контроллеры представляют собой коммутационное устройство, в состав которого входят командоконтроллер и силовые электромагнитные аппараты -- контакторы. Командоконтроллер с помощью своих контактов управляет катушками контакторов, которые уже своими контактами коммутируют силовые цепи двигателей. Срок службы магнитных контроллеров при одних и тех же условиях существенно выше, чем кулачковых контроллеров, что определяется высокой коммутационной способностью и износостойкостью электромагнитных контакторов.

Магнитные контроллеры нашли основное применение в электроприводе крановых механизмов, работа которых характеризуется большой частотой в...

Подобные документы

    Проектирование ремонтно-механического цеха. Выбор числа и мощности трансформаторов подстанций, сбор электрических нагрузок цеха. Компенсация реактивной мощности. Расчет параметров, выбор кабелей марки ВВГ и проводов марки АПВ распределительной сети.

    курсовая работа , добавлен 19.08.2016

    Характеристика ремонтно-механического цеха. Описание схемы электроснабжения. Конструкция силовой и осветительной сети. Расчет освещения и электрических нагрузок. Выбор числа и мощности трансформаторов, места расположения, оборудования питающей подстанции.

    курсовая работа , добавлен 13.01.2014

    Описание технологического процесса обеспечения электроснабжения ремонтно-механического цеха. Выбор напряжения и рода тока. Расчёт числа и мощности трансформаторов, силовой сети, ответвлений к станкам. Выбор и проверка аппаратуры и токоведущих частей.

    курсовая работа , добавлен 09.11.2010

    Характеристика ремонтно-механического цеха. Выбор схемы электроснабжения. Расчет электрической нагрузки и параметров внутрицеховых сетей. Выбор аппаратов защиты. Расчет токов короткого замыкания. Обслуживание автоматических выключателей. Охрана труда.

    курсовая работа , добавлен 12.01.2013

    Проектирование внутреннего электроснабжения завода и низковольтного электроснабжения цеха. Расчет центра электрических нагрузок. Выбор номинального напряжения, сечения линий, коммутационно-защитной аппаратуры электрических сетей для механического цеха.

    дипломная работа , добавлен 02.09.2009

    Краткая характеристика ремонтно-механического цеха, технологического режима работы, оценка электрических нагрузок. Описание рода тока, питающего напряжения. Алгоритм расчета электрических нагрузок, необходимых для выбора электрооборудования подстанции.

    дипломная работа , добавлен 13.07.2015

    Определение расчетной нагрузки ремонтно-механического цеха. Распределение приёмников по пунктам питания. Выбор защитных аппаратов и сечений линий, питающих распределительные пункты и электроприемники. Расчет токов короткого замыкания в сети до 1000 В.

    курсовая работа , добавлен 25.04.2016

    Описание электрического оборудования и технологического процесса цеха и завода в целом. Расчет электрических нагрузок завода, выбор трансформатора и компенсирующего устройства. Расчет и выбор элементов электроснабжения. Расчет токов короткого замыкания.

    дипломная работа , добавлен 17.03.2010

    Расчет электроснабжения ремонтно-механического цеха. Оценка силовых нагрузок, освещения, выбор трансформаторов, компенсирующих устройств, оборудования на стороне низшего напряжения. Построение карты селективности защиты, заземление и молниезащита цеха.

    курсовая работа , добавлен 27.10.2011

    Электроснабжение ремонтно-механического цеха. Установка компрессии буферного азота. Расчет электрических нагрузок систем электроснабжения. Выбор числа и мощности трансформаторов. Расчет токов короткого замыкания и релейной защиты силового трансформатора.

При проектировании сети электроснабжения крупных потребителей, в число которых входят также и отдельные цеха предприятий, важно учитывать достаточно много условий. Исходные данные для проектирования зависят от многих факторов, начиная от специализации предприятия и заканчивая географическим положением, поскольку нужно учитывать не только мощность, потребляемую оборудованием, но и расходы на освещение и теплоснабжение. Грамотно и рационально выполненный проект электроснабжения цеха существенно влияет на надежность работы установленного оборудования при минимально допустимом потреблении электроэнергии. Электроснабжение предприятия должно обеспечивать безопасные условия труда и не иметь вредного влияния на окружающую среду.

Наиболее сложный и трудоемкий этап проектирования внутреннего электроснабжения - это определение и расчет потребляемой мощности нагрузки. В основе расчета лежат данные, как по паспортной потребляемой мощности оборудования, так и режимы его работы. Учитываются все факторы, включая реактивную мощность, требующую компенсации при помощи специального оборудования – компенсаторов реактивной мощности для обеспечения равномерной нагрузки трехфазной сети.

Отдельной графой в определении мощности идет расчет системы освещения цеха, позволяющий выбрать и оптимизировать расположение и типы светильников, в зависимости от требований к освещенности различных участков. Наличие или отсутствие центрального отопления может потребовать введение в число потребителей сезонное подключение систем электроотопления.

Большинство цехов промышленного предприятия требуют проектирования систем вентиляции.

Указанные условия показывают, насколько может быть трудоемким расчет системы электроснабжения на первом этапе проектирования, особенно, если речь идет об электропитании цеха нестандартного оборудования.

На втором этапе проектирования, используя данные первого этапа и масштабный план размещения оборудования, выбирается тип распределительной сети. При этом, необходимо учитывать такие факторы:

  • Расположение приемников электроэнергии на территории цеха;
  • Степень ответственности приемников (требования к надежности электропитания);
  • Режим работы.

От выбранной схемы распределительной сети зависит расход материалов линий электропередач, расположение трансформаторных подстанций, распределительных щитов.


Используются такие виды распределительных сетей:

  • Радиальные схемы;
  • Магистральные;
  • Комбинированные.

При радиальной схеме каждый приемник питается от отдельной линии, проложенной от распределительного щита. Такой вид сетей используется для подключения мощных приемников, расположенных на достаточном удалении один от другого, а подстанция находится вблизи геометрического центра нагрузки.

Магистральная схема характеризуется тем, что применяется при сосредоточенной нагрузке, когда приемники энергии сгруппированы последовательно и на небольшом расстоянии друг от друга. В таком случае они подключаются к единой магистрали, проложенной от трансформаторной подстанции или распределительного щита.

К комбинированной относится магистральная схема с сосредоточенными нагрузками, когда от распределительно щита отходит несколько магистралей, каждая для своей группы нагрузок. Комбинированной сетью можно назвать и такое построение радиальной, когда мощные потребители получают питание непосредственно от питающей подстанции, а менее мощные объединены в группы и получают питание от распределительных щитов.

Именно комбинированные сети получили наибольшее распространение, так как они позволяют наиболее оптимально использовать материальные ресурсы без снижения надежности. На данном этапе также учитываются требования приемников к надежности питания и закладываются схемы резервирования подачи электроэнергии.


Схемы распределения сетей: а) радиальная; б, в) магистральная.

Третий этап разработки проекта основывается на двух предыдущих и предполагает расчет необходимого количества, мощности распределительных устройств, подстанций, компенсаторов реактивной мощности.

Расчет мощности приемников электрической энергии

Мощность нагрузки на питающую сеть во многом зависит от вида производства. К примеру, оборудование цеха металлорежущих станков комбината металлообработки при одинаковом количестве устройств, потребляет гораздо большую мощность, чем станки цеха обработки древесины. Таким образом, электроснабжение механического цеха тяжелого машиностроения требует более строгого подхода в отношении выбора количества и мощности преобразовательных подстанций и линий электропередач.

При проектировании следует учитывать суточный график работы потребителей, и в основе расчетов должна лежать средняя потребляемая мощность в часы максимальной нагрузки. Если в расчет брать суммарную мощность потребителей, то большую часть времени трансформаторы подстанции будут работать в недогруженном режиме, что приведет к лишним финансовым затратам на обслуживание питающего оборудования.

Считается, что оптимальный режим работы трансформатора должен составлять работу на 65 – 70% от номинальной мощности.

Требуемое сечение линий электропитания также выбирается с учетом средней потребляемой мощности, поскольку приходится учитывать допустимую плотность тока, нагрев и потери мощности.

Точно также на данном этапе должны учитываться характеристики потребления реактивной составляющей мощности, для рационального использования компенсаторов. Неправильное размещение и параметры компенсаторов приведут к перерасходу энергии, неправильному учету, а, главное, к увеличенным потерям и нагрузке на линии электропередач.

Данная задача ставится в первую очередь там, где в наличии имеется много мощных потребителей с индуктивной нагрузкой. Самым распространенным примером являются асинхронные двигатели, которые входят в большинство станочного оборудования.

Второй этап проектирования

Выбор типа распределительной сети частично определяется характеристикой оборудования по категорийности приемников. Различают три категории по требованиям к надежности электропитания:

  1. Первая категория – перерыв в подаче питания приводит к угрозе безопасности, авариям, полному срыву технологического процесса. К данной категории относятся большое количество оборудования машиностроительного и металлообрабатывающего профиля, а также предприятия серийного производства на основе конвейера, например, машиностроительного профиля.
  2. Вторая категория – нарушение производственного цикла, перебои в выпуске продукции, не приводящие к серьезным экономическим последствиям. Большинство производств относятся именно к этой категории. Здесь можно указать оборудование ремонтно - механического цеха (РМЦ).
  3. К третьей категории относятся потребители с более щадящими требованиями к электропитанию, чем первых двух категорий. Сюда можно отнести большинство производственного оборудования швейного цеха, и некоторые цеха металлоизделий.

Оборудование, относящееся к первой категории, требует выполнять проектирование электроснабжения с учетом взаимного резервирования нескольких (обычно двух) источников внешнего электрического снабжения.

Оптимальное сочетание надежности электроснабжения при минимальных затратах достигается правильным выбором системы электроснабжения в соответствии с категорийностью оборудования и расположением оборудования на площади производственного цеха.

В большинстве случаев наиболее рациональной является комбинированная магистральная схема с сосредоточенными нагрузками. Оборудование кузнечного цеха или сварочного цеха имеет свои особенности по энергопотреблению и требует прокладки отдельных питающих магистралей, а электроснабжение участка механосборочного цеха, напротив, вполне возможно выполнить по магистральной схеме. И когда в цехе установлено несколько поточных линий, то без нескольких магистралей питания не обойтись. То же необходимо учитывать, когда выполняется расчет электроснабжения инструментального цеха.


Отдельные линии питания закладываются на систему освещения и вентиляции, будь то электропроект деревообрабатывающего комбината или проект электрики авиазавода авиационного предприятия.

Заключительный этап

На основании данных предыдущих расчетов составляется электротехнический проект, состоящий из нескольких комплектов документов. Вначале разрабатывается рабочий проект, который в процессе выполнения работ может корректироваться в зависимости от местных условий и в конце работ будет отличаться от расчетного. Одним из основных документов при проектировании электроснабжения является однолинейная схема электроснабжения цеха. Чертеж однолинейной схемы позволяет быстро сориентироваться в тонкостях и особенностях электроснабжения цеха.

Подведем итоги

Проектирование системы электроснабжения отдельного цеха или целого завода является одним из самых ответственных мероприятий, выполнение которых возможно только специализированными организациями, имеющими право на такие работы. Не имеет смысла терять время на разработку проекта самостоятельно. Как бы он не был выполнен грамотно и точно, он все равно не получит согласования в организациях энергосбыта. Заказав типовой проект схемы внутрицехового электроснабжения до 1000 в или более у лицензированной организации, можно не беспокоится о безопасности и законности всех мероприятий по строительству и работе электрооборудования. Готовый проект будет иметь все необходимые допуски и согласования, начиная от эскиза и заканчивая полностью скорректированной документацией при сдаче объекта в эксплуатацию.

Заказать проект можно в компании «Мега.ру». На сайте компании имеется множество статей, раскрывающих суть и тонкости проектирования, с примерами проектов. Особое внимание следует обратить на статью , где подробным образом разъясняется, какие существуют стадии выполнения проекта электрики.

Но все же, гораздо больше интересующей информации можно получить, обратившись за консультацией непосредственно в компанию. В разделе указано, как можно связаться с нашими специалистами и получить ответы на все вопросы.

На первом этапе разрабатывается проект распределительной внутрицеховой сети (РВС), которая должна соответствовать рекомендациям ПУЭ, СНиП, ПТЭ, ПТБ . На основе РВС составляется расчетная схема электроснабжения цеха.

РВС разрабатывается по уже известному строительному чертежу цеха, с указанной расстановкой оборудования и по известной электрической мощности отдельных приемников. На чертеже указываются места установки СУ и РП, выполняется трассировка сети. Распределительные сети могут выполняться с помощью распределительных шинопроводов.

По своей структуре схемы внутрицеховых электрических сетей бывают радиальными, магистральными и смешанными.

Радиальные схемы (рис. 4.1 а) применяют при наличии групп сосредоточенных нагрузок с неравномерным распределением их по площади цеха, во взрыво- и пожароопасных цехах, в цехах с химически активной или агрессивной средой. Радиальные схемы применяются в насосных и компрессорных станциях, на предприятиях нефтехимической промышленности, в литейных и других цехах. Радиальные схемы внутрицеховых сетей выполняют кабелями или изолированными проводами. Они могут быть применены для нагрузок любой категории надежности.

Достоинство радиальных схем − их высокая надежность. Недостатками являются: малая экономичность, связанная со значительным расходом проводникового материала, труб, распределительных шкафов; большое число защитной и коммутационной аппаратуры; ограниченная гибкость сети при перемещениях ПЭ, вызванных изменением технологического процесса; невысокая степень индустриализации монтажа.

Магистральные схемы целесообразно применять для питания силовых и осветительных нагрузок, распределенных относительно равномерно по площади цеха, а также для питания группы ПЭ, принадлежащих одной технологической линии. При магистральных схемах одна питающая магистраль обслуживает несколько распределительных шкафов и крупные ПЭ цеха.

Достоинствами магистральных схем являются: упрощение трансформаторных подстанций; высокая гибкость сети, дающая возможность перестановок технологического оборудования без переделки сети; использование унифицированных элементов (шинопроводов), позволяющих вести монтаж индустриальными методами. Недостаток − меньшая надежность по сравнению с радиальными схемами, так как при аварии на магистрали все подключенные к ней ПЭ теряют питание.

На практике радиальные или магистральные схемы редко встречаются в чистом виде. Наибольшее распространение имеют смешанные (комбинированные) схемы (рис.4.1 б), сочетающие в себе элементы радиальных и магистральных схем и пригодные для любой категории электроснабжения. Такие схемы широко применяются в промышленности. В смешанных схемах от главных питающих магистралей и их ответвлений электрические приемники питаются через шинопроводы в зависимости от расположения оборудования в цехе.

На участках с малой нагрузкой, где прокладка распределительных шинопроводов не целесообразна, устанавливаются РП, присоединяемые к ближайшим шинопроводам (распределительным или магистральным).

В цехах с преобладанием нагрузок 1-й и 2-й категорий должны предусматриваться резервные перемычки между соседними подстанциями.

Выбор вида схемы внутрицеховой электрической сети определяется многими факторами:

    размещением оборудования и мощностью установленного на нем электрооборудования;

    пожаро- и взрывоопасностью производства;

    микроклиматическими условиями и характеристикой окружающей среды в местах размещения электрооборудования.

Приняв во внимание основные положения вышеизложенного, ознакомившись с характеристиками помещения, технологического оборудования, электрическими приемниками, выбрав вид электрической сети, источник электроснабжения, его размещение и характеристики, необходимо учесть следующие рекомендации, которые позволят составить исходный вариант расчетной схемы:

    от одного фидера может питаться один или несколько РП, включенных по магистральной схеме питания;

    ток фидера не должен превышать 300−400 А;

    электрическая нагрузка на каждый РП не должна превышать 200 −250 А;

    для подключения электрического приемника мощностью более 20 кВт следует выделять отдельную линию электропитания;

    электрические приемники мощностью менее 10 кВт (особенно это касается однотипного оборудования) рационально включать <цепочкой>, то есть подключить их последовательно к одной линии, но количество их следует выбрать таким, чтобы суммарная мощность нагрузки не превышала 20 кВт;

    РП изготовляются напольного, навесного и утопленного исполнения, одностороннего или двухстороннего обслуживания. От этого зависит способ их монтажа (у строительной колоны, у стены или утоплено в стену) и, как следствие, расположение в помещении цеха и на плане сети электроснабжения;

    РП одностороннего обслуживания могут устанавливаться задней стенкой вплотную к стене;

    РП двухстороннего обслуживания должны иметь доступ с лицевой и задней стороны;

    ввод проводов в РП напольного исполнения, имеющих вид шкафов, выполняется в трубах в нижнюю часть шкафа;

    РП устанавливаются вблизи места расположения приемников электроэнергии при среднем радиусе отходящих от РП линий 10 −30 м;

    РП должно обеспечивать резервирование ответвлений, то есть следует выбрать такой РП, у которого на выходе на 1−2 группы больше, чем требуется для подключения приемников по данному проекту.

ВВЕДЕНИЕ

Повышение уровня электрификации производства и эффективности использования энергии основано на дальнейшем развитии энергетической базы, непрерывном увеличении электрической энергии. В настоящее время при наличии мощных электрических станций, объединённых в электрические системы, имеющие высокую надёжность электроснабжения, на многих промышленных предприятиях продолжается сооружение электростанций. Необходимость их сооружения обуславливается большой удалённостью от энергетических систем, потребностью в тепловой энергии для производственных нужд и отопления, необходимостью резервного питания ответственных потребителей. Проектирование систем электроснабжения ведётся в ряде проектных организаций. В результате обобщения опыта проектирования вопросы электроснабжения предприятий получили форму типовых решений. В настоящее время разработаны методы расчётов и проектирования цеховых сетей, выбора мощности цеховых трансформаторов, методика определения цеховых нагрузок и т. д. В связи с этим большое значение приобретают вопросы подготовки высококвалифицированных кадров, способных успешно решать вопросы проектирования электроснабжения и практических задач.

В данном курсовом проекте будет рассмотрена схема трансформаторной подстанции описание ее работы. Так же будет произведен расчет выбора наиболее оптимального трансформатора.

Целью курсового проекта является: выбор и обоснование схемы электроснабжения и устанавливаемого электрооборудования для проектируемого объекта.

Объект исследования: ремонтно-механический цех

Предмет исследования: этапы расчета и выбор системы электроснабжения ремонтно-механического цеха.

Гипотеза: при разработке электрической схемы ремонтно-механического цеха найден оптимальный вариант, обеспечивающий надежную бесперебойную работу электрооборудования с учетом безопасности ее обслуживания.

Для реализации поставленной цели и проверки гипотезы поставлены следующие задачи:

Произвести выбор числа и мощности трансформаторов питающей подстанции;

Спроектировать однолинейную схему электроснабжения производственного цеха.

1. ОСНОВНАЯ ЧАСТЬ

1 Характеристика объекта

Производственный цех занимается изготовлением различных деталей и металлоконструкций, необходимых для основного производства. В состав цеха входят различные металлообрабатывающие станки, сварочное и грузоподъёмное оборудование, вентиляторы. Мощность электроприёмников цеха составляет от 5 до 30 кВт. Электроприёмники работают в длительном (металлообрабатывающие станки, вентиляторы) и в повторно кратковременном режимах (грузоподъёмное оборудование). Электроприёмники цеха работают на переменном 3-х фазном токе (металлообрабатывающие станки, вентиляторы, грузоподъёмное оборудование) и однофазном токе (освещение). Электроприёмники цеха относятся к третьей категории по требуемой степени надёжности электроснабжения. Окружающая среда в цехе нормальная, поэтому всё оборудование в цехе выполнено в нормальном исполнении. Площадь цеха составляет 367м 2

Характеристика электрооборудования в табл. 1.1

Таблица 1. 1

№ по плану

Наименование электроприёмников

Р ном, кВт

Станок токарный

Станок токарный

Станок токарный

Станок токарный

Станок токарный

Станок токарный

Станок карусельный с ЧПУ

Станок фрезерный

Станок фрезерный

Станок фрезерный

Станок фрезерный

Вентилятор

Вентилятор

Кран - балка ПВ = 40%

Кран - балка ПВ = 40%

Вентилятор

Вентилятор


На рис.1.1 представлен план проектируемого цеха

Рис.1.1 План проектируемого цеха

1.2 Описание схемы электроснабжения

Электроснабжение производственного цеха осуществляется от однотрансформаторной подстанции 6/0,4кВ с мощностью трансформатора 160 кВА. В свою очередь ТП6/0,4 кВ питается по кабельной линии ААБ 3х10, проложенной в земле, от вышестоящей двух трансформаторной подстанции 110/6кВ с трансформаторами мощностью 2500кВА каждый, которая запитывается от энергосистемы по одноцепной воздушной линии А-70.

На стороне 6кВ ТП 6/0,4 в качестве защитного коммутационного оборудования установлены масляные выключатели и разъединители.

На стороне 0,4 кВ в качестве аппаратов защиты от токов короткого замыкания установлены предохранители

3 Конструкция силовой и осветительной сети

Для приема и распределения электроэнергии в производственном цехе установлены распределительные щиты.

Электроприёмники запитываются от ШР проводом, проложенным в трубах

В качестве аппаратов защиты от токов короткого замыкания применены предохранители

Освещение цеха выполнено 28-ю светильниками РКУ с ртутными лампами высокого давления мощностью 400Вт

Осветительные сети выполняются проводом АПВ-2,5мм² проложенным в трубе

Питание рабочего освещения производится от осветительного щитка ОЩВ-12, в котором в качестве аппаратов защиты от токов короткого замыкания и перегруза установлены автоматические выключатели

2. РАСЧЁТНАЯ ЧАСТЬ

1 Расчёт освещения

Расчет освещения проводится по методу коэффициента использования светового потока. Расчет покажем на примере участка I. В качестве источника света примем к установке лампы ДРЛ мощностью 400 Вт

Число источников света определяется по формуле:

где Е норм - нормированная освещённость, Е норм = 300лк - коэффициент, учитывающий снижение светового потока при эксплуатации, Z = 1,1

К з - коэффициент, учитывающий неравномерность распределения светового потока на освещаемой поверхности, К з = 1,5 - площадь помещения, м²

Ф л - световой поток одной лампы, Ф л = 22000 лм, - коэффициент использования светового потока определяется в зависимости от типа светильника, лампы, коэффициентов отражения и показателя помещения i

Показатель помещения находим по формуле:

где i - показатель помещения

А - длина помещения, м

В - ширина помещения, м

Н р - высота подвеса светильника над рабочей поверхностью, м

Для светильника РКУ при ρ n = 50%; ρ c = 30%; ρ p = 10% и i = 1,34 u =0,48

где ρ n - коэффициент отражения от потолка, %

ρ c - коэффициент отражения от стен, %

ρ p - коэффициент отражения от рабочей поверхности, %

определяем по формуле (1) число ламп:=

Находим число светильников аварийного освещения (25% от рабочего):

Устанавливаем 8 светильников в 2 ряда по 4шт в ряду

Для остальных участков расчёт аналогичен, результаты сведены в табл. 2.1.

Таблица 2.1

Наимен. участка

Тип лампы

Площадь участка, м²


2 Расчёт электрических нагрузок

Расчёт ведётся по узлу нагрузки методом упорядоченных диаграмм по следующему алгоритму

а) Все приёмники данного узла нагрузки делятся на характерные технологические группы

б) Для каждой группы по находят коэффициент использования Ки, коэффициент активной мощности cosφ и реактивной по формуле:

(2.3)

в) Находим установленную мощность для каждой группы электроприёмников по формуле:

Р уст = N · (2.4)

где N - число приёмников ном - номинальная мощность приёмников, кВт

г) Для каждой технологической группы находят среднесменную активную Р см и среднесменную реактивную Q см мощности по формулам:

Р см = К и · Р уст (2.5) см = P см · tgφ(2.6)

д) По данному узлу нагрузки находят суммарную установленную мощность, суммарную среднесменную активную мощность и суммарную среднесменную реактивную мощность: ΣР уст; ΣР см; ΣQ см

е) Определяют групповой коэффициент использования по формуле:

К и.гр = ΣР см / ΣQ см (2.7)

где ΣР см - суммарная среднесменная активная мощность, кВт;

ΣQ см - суммарная среднесменная реактивная мощность, кВар

ж) Определяют модуль нагрузки по формуле:

где Р ном.max - активная номинальная мощность наибольшего приёмника в группе, кВт

Р ном.min - активная номинальная мощность наименьшего приёмника в группе, кВт

з) Определяют эффективное число приёмников по условию:

если m ≤ 3, n ≥ 4, то n э = n; при m> 3, К и.гр < 0,2, эффективное число приёмников определяют в следующем порядке:

) выбирается наибольший по мощности электроприёмник рассматриваемого узла

) выбираются электроприёмники, мощность каждого из которых равна или больше половины наибольшего по мощности электроприёмника

) подсчитывают их число n′ и их суммарную номинальную мощность Р′ ном

) определяют суммарную номинальную мощность всех рабочих электроприёмников рассматриваемого узла Р ном∑ и их число n

) находят n′ * и Р′ ном* :

′ * = n′ / n(2.9)

Р′ ном* = Р′ ном / Р ном∑ (2.10)

) по n′ * и Р′ ном* определяют n′ э* по графику

) находят n э:

n э = n′ э* · n (2.11)

и) Определяют, в зависимости от группового коэффициента использования и эффективного числа электроприёмников, коэффициент максимума К м по графическим зависимостям или

к) Определяют расчётную активную мощность по формуле:

Р м = К м · ΣР см (2.12)

л) Определяют расчётную реактивную мощность по формуле:

если n э ≤ 10, то Q м = L м · ΣQ см (2.13)

если n э > 10, то Q м = ΣQ см (2.14)

где L м - коэффициент максимума реактивной мощности, L м = 1,1

м) Определяют полную расчётную нагрузку S м по формуле:

н) Определяем расчетный ток I по формуле:

где U - номинальное напряжение электроприёмников, кВ

Активная расчётная нагрузка освещения определяется по формуле:

Р р.о = К с · Р уст (2.17)

где К с - коэффициент спроса, К с = 0,8

по формуле (2.4):

Р уст = 28 · 0,4 = 11,2 кВт

Р р.о = 0,8 · 11,2 = 8,96 кВт

По формуле (2.3) находим: tgφ = 0,62

по формуле (2.6) находим расчётную реактивную осветительную нагрузку:

Q р.о = 8,96 · 0,62 = 5,6 кВАр

Полная нагрузка на шинах 0,38 кВ ТП определяется по формуле:

р = √ (P м∑ + Р р.о)² + (Q м∑ + Q р.о)² (2.18)

где P м∑ - суммарная силовая нагрузка на шинах 0,38 кВ ТП, кВт м∑ - суммарная реактивная нагрузка на шинах 0,38кВ ТП, кВАр

Результаты расчёта для всех узлов нагрузки сведены в табл. 2.2

Таблица 2.2

Наим. узла гр. ЭП

Р уст кВт

Р ном кВт

C osφ tgφ

1) станки фрезерные








2) станок токарный








3) станок карус. с ЧПУ

0,5 1,73








4) кран-балка ПВ=40%

0,5 1,73








На шинах ШР-1




1) станки фрезерные

0,4 2,35








2) Вентиляторы

0,8 1,73








На шинах ШР-2




1) станки токарные

0,4 2,35








2) Вентиляторы

0,8 1,73








3) кран-балка ПВ=40%

0,5 1,73








На шинах ШР-3




Освещение













На шинах 0,38 ТП














2.3 Компенсация реактивной мощности

Мощность компенсирующего устройства вычисляется по формуле:

ку = α · ΣР расч (tgφ ср.взв -tgφ с) (2.19)

где α - коэффициент, учитывающий возможность компенсации реактивной мощности естественными способами, α = 0,9

ΣР расч - суммарная расчётная активная нагрузка, кВт

tgφ с - коэффициент реактивной мощности, который необходимо достичь после компенсации реактивной мощности, по заданию: tgφ с = 0,45.

tgφ ср.взв - средневзвешенное значение коэффициента реактивной мощности, вычисляется по формуле:

(2.20)

где ΣQ расч - суммарная расчётная реактивная нагрузка

Полная расчётная нагрузка на шинах 0,38 кВ трансформаторной подстанции с учётом компенсации реактивной мощности вычисляется по формуле:

4 Выбор числа и мощности трансформаторов питающей подстанции

Так как электроприёмники производственного цеха относятся к потребителям 3 категории по требуемой степени надёжности электроснабжения, то на подстанции можно установить 1 трансформатор

В соответствии с нагрузкой намечаем 2 варианта мощности трансформаторов:

вар - 1 X 160 кВА

вар - 2 X 63 кВА

Покажем расчёт на примере 2 варианта

Проверяем трансформаторы по нормальному режиму. Находим

коэффициент загрузки трансформаторов:

(2.22)

где S нагр - полная мощность нагрузки, кВА- число устанавливаемых трансформаторов ном.тр - номинальная мощность одного трансформатора, кВ·А

Проверяем работу трансформаторов в аварийном режиме. Масляные трансформаторы допускают в аварийном режиме перегрузку на 40% 6 часов в сутки в течении 5-ти суток

При отключении одного трансформатора, второй с учётом допустит перегрузки:

4 · 63 = 88,2 кВА

Дефицит мощности составит:

1 - 88,2 = 26,9 кВА

но т.к. электроприёмники являются потребителями 3-ей категории по надёжности электроснабжения, то часть их можно на время аварии отключить

Проверяем работу трансформаторов по экономически целесообразному режиму

Определяем стоимость потерь энергии по формуле:

С n =С о ·N·T м [(ΔР х.х +К и.п ·I х.х ·)+К з 2 ·(ΔР к.з +К ип ·U к ·] (2.23)

где С о - стоимость одного кВт·ч, на текущий 2013г, С о = 0,81 тн/кВт·ч

Т м - число использования максимума нагрузки, ч

К и.п - Коэффициент изменения потерь, К и.п = 0,03 кВт/кВАр

ΔР х.х - потери мощности холостого хода, ΔР х.х = 0,24кВт х.х - ток холостого хода, I х.х = 2,8%

ΔР к.з - потери мощности короткого замыкания, ΔР к.з = 1,28кВт к - напряжение короткого замыкания, U к = 4,5%

Определяем капитальные затраты по формуле:

К = N · С тр (2.24)

где С тр - стоимость трансформатора, С тр = 31 тн

Находим амортизационные затраты С а:

С а = К а · К(2.25)

где К а - коэффициент учитывающий отчисления на амортизацию и эксплуатацию, для трансформаторов К а = 0,12

Находим суммарные ежегодные затраты:

С ∑ = С n + С а (2.26)

Для первого варианта результаты сведены в табл. 2.3

Таблица 2.3

Наименование параметров

Вариант 1 - 1 x 160 кВ·А

Вариант 2 - 2 x 63 кВ·А

ΔР х.х кВт

ΔР к.з кВт

С о, тн/кВт∙ч


Так как С ∑II > С ∑I и К II > К I , то выбираем I вариант - 1 X 160 кВА, как более экономичный

5 Выбор места расположения питающей подстанции

Место расположения ШР определяется по картограммам нагрузок в зависимости от мощности, запитанных от него электроприёмников.

Распределительные шкафы и цеховую трансформаторную подстанцию целесообразно устанавливать в центре электрических нагрузок (ЦЭН). Координаты ЦЭН определяют по формуле:

Х цэн = (2.27)

Y цэн =(2.28)

где Хi - координата i - го электроприёмника по оси абсцисс, м;- координата i - го электроприёмника по оси ординат, м;

Р ном.i - номинальная мощность i - го электроприёмника, кВт.

Расчёт покажем на примере ШР - 1:

Х цэн = = 26,1м цэн == 8,1м

Для остальных расчет аналогичный результаты сведены в таблице 2.4

Таблица 2.4

Расчётные координаты

Координаты установки



2.6 Расчёт сети 0,38 кВ

цех электроснабжение освещение трансформатор

Выбор аппаратов защиты

Выбор сечения проводника для отдельного электроприёмника покажем на примере токарного станка №13. Сечение питающего проводника выбираем по допустимому нагреву:

доп ≥ I р (2.29)

где I доп - допустимый ток проводника, определяется сечением

токоведущей жилы, ее материалом, количеством жил, типом изоляции и условиями прокладки, А

Расчётный ток определим по формуле:

р =(2.30) р =

данному току соответствует провод АПВ - 2,5 мм² с I доп = 19А

Проверяем выбранное сечение по допустимым потерям напряжения:

∆U доп ≥∆U р (2.31)

где ∆U доп - допустимые потери напряжения, ∆U доп = 5%

∆U р - расчётные потери напряжения, %

∆U р % = (2.32)

где L - длина проводника, км o - активное сопротивление 1км проводника, r o = 3,12Ом/км,

x o - реактивное сопротивление 1км проводника, x o = 3,12Ом/км,

т.к. ∆U р < ∆U доп, то сечение 2,5 мм² соответствует допустимым потерям напряжения. В качестве аппарата защиты выбираем предохранитель по следующим условиям:

U ном.пр > U ном (2.33) ном.пр > I р (2.34) пл.вс > I пик / α(2.35)

где U ном.пр - номинальное напряжение предохранителя, В ном.пр - номинальный ток предохранителя, А пл.вс - номинальный ток плавкой вставки, А пик - пиковый ток, А

α - коэффициент, учитывающий условия пуска, α = 2,5

пик = К п ∙ I р (2.36)

где К п - кратность пускового тока по отношению к току нормального режима

К п = 5 пик = 19∙5 = 95А ном.пр > 380В ном.пр > 19А пл.вс > 95/2,5 = 38А

Выбираем предохранитель ПН - 2, I ном = 100А I пл.вс = 40А

Проверяем выбранный провод на соответствие выбранному предохранителю по условию:

доп ≥ К з ∙ I з (2.37)

где К з - кратность допустимого тока проводника по отношению к току срабатывания аппарата защиты, К з = 1

I з - ток срабатывания защиты, А

т.к. 19 < 1 ∙ 40, то провод не соответствует аппарату защиты поэтому выбираем провод АПВ - 10мм 2 , I доп = 47А

Расчёт для группы электроприёмников покажем на примере ШР-1

В соответствии с формулой (2.30) I р = 67,82А. По условию (2.29) выбираем провод АПВ - 25мм 2 ;I доп = 80А

По формуле (2.32) находим:

∆U р % = 0,2%

Провод АПВ-25мм 2 соответствует допустимым потерям напряжения,

т.к. ∆U р =0,2% ≤ ∆U доп =5%

В качестве аппарата защиты устанавливаем предохранитель.

Находим пиковый ток:

пик = I р - К и ∙ I нб + I пуск. нб (2.38)

где I нб - номинальный ток наибольшего по мощности двигателя, питающегося от ШР-1 пуск.нб - пусковой ток наибольшего по мощности двигателя, питающегося от ШР-1

По формуле (2.30) находим I нб = 91А, по формуле (2.36) I пуск.нб = 455А пик = 67,82 - 0,13 · 91 + 455 = 511А

По условиям (2.33), (2.34), (2.35) выбираем предохранитель ПН-2 ном.пр =250А, I пл.вс = 250А

Проверяем предохранитель по селективности

Однолинейная схема ШР-1 дана на рис. 2.1

Рис.2.1 Однолинейная схема ШР-1

Предохранитель на вводе не селективен, поэтому выбираем предохранитель ПН-2 I ном.пр = 400А, I пл.вс = 350А

Проверяем выбранный провод на соответствие выбранному предохранителю по условию (2.37), т.к.67,82 ≤ 1 ∙ 350, то провод не соответствует аппарату защиты, поэтому выбираем кабель СБ 3·185 + 1·95 с I доп = 340А

С учётом допустимой перегрузки кабель соответствует выбранному предохранителю.

Для остальных электроприемников и шкафов распределительных расчёт аналогичен, результаты сведены в табл. 2.5

Таблица 2.5

проводник

предохранитель


Кол-во жил





2.7 Расчет сети напряжением выше 1 кВ

Определяем экономически целесообразное сечение по формуле:

F эк = (2.39)

где j эк - экономическая плотность тока, j эк = 1,7 А/мм 2

В соответствии с формулой (2.30): р = А эк = 9м

Выбираем ближайшее стандартное сечение - 10 мм²

Выбираем кабель ААБ-3х10 мм 2

Проверяем выбранный кабель на термическую стойкость к токам к.з

Термически устойчивое сечение к токам к.з определяется по формуле

m.y. = (2.40)

где I ∞ - установившееся значение периодической составляющей тока к.з ∞ = 2850А (см. разд. 2.8)

С - коэффициент, учитывающий разницу теплоты выделенной проводником дои после короткого замыкания, С = 95

t пр - фиктивное время, при котором установившийся ток к.з выделяет то же количество теплоты, что и действительный ток к.з. за действительное время

при tg = 0,15с, t пр = 0,2с, при β ’’ =2 т.y = 2850 · = 13

Кабель ААБ 3 х 10 термически устойчив к токам короткого замыкания

Окончательно выбираем кабель ААБ 3 х 10

2.8 Расчет токов короткого замыкания

Расчёт проводим в относительных единицах при базисных условиях. В соответствии с заданием и результатами проектирования составляем расчётную схему и схему замещения. Расчётная схема дана на рис.2.2, схема замещения на рис.2.3

Рис. 2.2 Расчетная схема Рис.2.3 Схема замещения

Примем, что базисная мощность Sб = 100МВА, базисное напряжение Uб = 6,3кВ

Сопротивление воздушной линии находится по формуле:

Х вл*б =(2.41)

где U ном.ср - среднее номинальное напряжение ступени, кВ

Х вл*б = 0,4 · 35 · 100/115² = 0,11Ом

Сопротивление трансформатора находится по формуле:

тр.б =* (2.42) тр.б =* = 4,2Ом

Определяем реактивное сопротивление кабельной линии по формуле (2.41):

Х кл*б = = 0,28 Ом

Находим активное сопротивление кабельной линии по формуле

(2.43) кл*б = = 7,97

Используя признаки параллельного и последовательного соединения сопротивлений, находим активное и индуктивное результирующие сопротивления:

Х рез*б = 0,11+2,1+0,28 =2,49 рез*б = 7,97

т.к= рез*б = 8,35

Определяем ток короткого замыкания по формуле:

где I б - базисный ток, кА

По формуле (2.14) находим базисный ток:

I б = = 9,16кА

I к.з. = = 1,1кА

Определяем ударный ток:

у = (2.45) у = 2,55 ∙ 1,1 = 2,81кА

Находим мощность короткого замыкания:

к.з. = (2.46) к.з. = = 11,98 МВА

9 Выбор оборудования подстанции

Выбор разъединителей производим по следующим условиям:

ном.р > U ном. (2.47) ном.р > I расч. (2.48) а. ≥ i y. (2.49)

I t ² ∙ t> I к 2 ∙ t пр (2.50)

где U ном.р - номинальное напряжение разъединителя

I ном.р - номинальный ток разъединителя а - амплитудное значение предварительного сквозного тока к.з t - предельный ток термической стойкости- время, в течении которого разъединитель выдерживает предельный ток термической стойкости

Номинальные данные разъединителя находим по

Выбор выключателя производим по следующим условиям:

ном.в = U ном (2.51) ном.в > I р (2.52) а. ≥ i y (2.53) t ² ∙ t > I к 2 ∙ t пр (2.54) отк > I к (2.55) отк ≥ S к (2.56)

где U ном.в - номинальное напряжение выключателя, кВ ном.в - номинальный ток выключателя, А отк - номинальный ток отключения выключателя, кА отк - мощность отключения выключателя, МВА

отк = ∙ I отк ∙ U ном.в (2.57)

Номинальные данные масляного выключателя находим . Результаты выбора представлены в табл. 2.6

Таблица 2.6


3. БЕЗОПАСНОСТЬ И ОХРАНА ТРУДА

1 Организационные и технические мероприятия безопасного проведения работ с электроустановками до 1 кВ

Для безопасного проведения работ должны выполняться следующие организационные мероприятия:

назначение лиц, ответственных за безопасное ведение работ;

выдача наряда и распоряжения;

выдача разрешения на подготовку рабочих мест и на допуск;

подготовка рабочего места и допуск;

надзор при выполнении работы;

перевод на другое рабочее место;

оформление перерывов в работе и её окончание.

Все работы, как со снятием напряжения, так и без него вблизи или на токоведущих частях должны выполняться по наряду-допуску или по распоряжению, поскольку обеспечение их безопасного выполнения требует специальной подготовки рабочего места и выполнения определённых мер. Исключение составляют кратковременные и небольшие по объёму работы, выполняемые дежурным или оперативно-ремонтным персоналом в порядке текущей эксплуатации. Их продолжительность не должна превышать 1 ч.

Подготавливающим рабочее место и допускающим может быть один работник.

Нарядом является составленное на специальном бланке задание на безопасное производство работы, определяющее содержание работы, места, время её начала и окончания, необходимые меры безопасности, состав бригады и лиц, ответственных за безопасность выполнения работы. Наряд может быть выдан на срок до 15 суток.

Распоряжение является заданием на безопасное производство работы, определяющее содержание работы, места, время, меры безопасности лиц, которым поручено её выполнение. Распоряжение может быть устным и письменным, оно имеет разовый характер. Работы продолжительностью до 1 ч разрешается выполнять по распоряжению ремонтному персоналу под надзором дежурного или лица из числа оперативно-ремонтного персонала, а также самому дежурному или оперативно-ремонтному персоналу. При этом старшее лицо, выполняющее работу или ведущее надзор, должно иметь квалификационную группу IV в электроустановках напряжением выше 1000 В. Если продолжительность этих работ свыше 1 ч или они требуют участия более трёх человек, то они оформляются нарядом.

Выдающий наряд, распоряжение устанавливает возможность безопасного выполнения работы. Он отвечает за достаточность и правильность указанных в наряде мер безопасности, за качественный и количественный состав бригады и назначение ответственных лиц, а также за соответствие выполняемой работе групп по электробезопасности перечисленных в наряде работников. Право выдачи нарядов и распоряжений предоставляется работникам из административно-технического персонала предприятия и его структурных подразделений, имеющим группу V.

Руководитель работ отвечает за выполнение всех указанных в наряде мер безопасности и их достаточность, полноту и качество инструктажа бригады, проводимого допускающим и производителем работ, а также организацию безопасного ведения работы. Руководителями работ должны назначаться инженерно-технические работники с группой V.

Лицо, дающее разрешение на подготовку рабочих мест и на допуск, несёт ответственность за достаточность предусмотренных для работы мер по отключению и заземлению оборудования и возможность их осуществления, а также за координацию времени и места работы допускаемых бригад. Давать разрешение на подготовку рабочих мест и на допуск имеют право работники из дежурного персонала с группой IV в соответствии с должностными инструкциями, а также работники из административно-технического персонала, уполномоченные на это указанием по предприятию.

Лицо, подготавливающее рабочее место, отвечает за правильное и точное выполнение мер по подготовке рабочего места, указанных в наряде, а также требуемых по условиям работы (установка замков, плакатов, ограждений).

Подготавливать рабочие места имеют право дежурный или работники из оперативно-ремонтного персонала, допущенные к оперативным переключениям в данной электроустановке.

Допускающий отвечает за правильность и достаточность принятых мер безопасности и соответствие их мерам, указанным в наряде, характеру и месту работы, за правильный допуск к работе, а также за полноту и качество проводимого им инструктажа. Допускающий должен назначаться из дежурного или оперативно-ремонтного персонала. В электроустановках выше 1000В допускающий должен иметь группу IV. Производитель работ, выполняемых по наряду в электроустановках выше 1000В, должен иметь группу IV. Наблюдающий должен назначаться для надзора за бригадами работников, не имеющих права самостоятельно работать в электроустановках. Наблюдающими могут назначаться работники с группой III.

Каждый член бригады обязан выполнять правила техники безопасности при эксплуатации электроустановок и инструктивные указания, полученные при допуске к работе и во время работы, а также требования местных инструкций по охране труда.

ЗАКЛЮЧЕНИЕ

При проектировании ремонтно-механического цеха получены следующие результаты:

1. Выбран вариант схемы электроснабжения, разработана схема распределительной сети электроснабжения

2. В соответствии с силовой и осветительной нагрузками с учетом экономических показателей для электроснабжения производственного цеха необходимо установить на питающей подстанции 6/0,4кВ один трансформатор мощностью 160кВА

Силовые сети 0,38кВ целесообразно выполнить кабелем марки ААБ, проложенным по кабельным конструкциям, и проводом АПВ, проложенным в трубах в полу

В качестве аппарата защиты необходимо выбрать предохранители

5.Приведены организационно технические мероприятия по охране труда при проведении работ в электроустановках до 1 кВ

Результаты проектирования даны в таблице:

Наименование электрооборудования

Марка Тип

Единица измерения

Количество

Разъединитель трёхполюсной

Выключатель масляный

ВММ-10-320-10тз

Трансформатор масляный мощностью 160Кв*А

Предохранитель

тоже I ном =600А I пл.вс =500А

тоже I ном =250А I пл.вс =200А

тоже I ном =250А I пл.вс =120А

тоже I ном =100А I пл.вс =80А

тоже I ном =100А I пл.вс =50А

тоже I ном =100А I пл.вс =40А

тоже I ном =100А I пл.вс =30А

Кабель на напряжение 6Кв Сечением 3/10мАПВ

Постников Н.П., Рубашов Г.М. Электроснабжение промышленных предприятий. Л.: Стройиздат, 1980.

Липкин Б.Ю. Электроснабжение промышленных предприятий и установок.- М.: Высшая школа, 1981.

Крючков И.П., Кувшинский Н.Н., Неклепаев Б.Н. Электрическая часть станций и подстанций.- М.: Энергия, 1978.

6. Справочник по электроснабжению и оборудованию /Под ред. Федорова А.А., Барсукова А.Н. М., Электрооборудование, 1978.

7. Правила устройства электроустановок /Минэнерго СССР.- М.: Энергия, 1980.

Хромченко Г. Е. Проектирование кабельных сетей и проводок - М.: Высшая школа, 1973.

9. Е.Ф. Цапенко. Устройства для защиты от однофазного замыкания на землю. - М.: Энергоатомиздат 1985 г. - 296 с.

10. Шидловский А.К., Кузнецов В.Г. Повышение качества энергии в электрических сетях. - Киев: Наукова думка, 1985 г. - 354 с.

Железко Ю.С.. Выбор мероприятий по снижению потерь электроэнергии в электрических сетях. Руководство для практических расчетов. - М.: Энергоатомиздат, 1989 г. - 176 с.

Выполняем все виды студенческих работ

Курсовая

Расчёт электрической нагрузки производится совместно для рабочего и аварийного освещения. Исходные данные для расчёта приводятся в таблице 8. Таблица 8 - Параметры нагрузки освещения цеха. Активные сменные мощности рабочего, кВт, и аварийного, кВт, освещения определяются по формуле. Для = 0,83. Реактивные сменные мощности рабочего, кВАр, и аварийного, кВАр, освещения определяются по формуле (2)...

Электроснабжение механического цеха серийного производства (реферат, курсовая, диплом, контрольная)

  • Введение
  • 1. Общая часть
  • 1.3 Категория надёжности электроснабжения цеха
  • 2. Специальная часть
  • 2.3 Расчёт электрической нагрузки силового оборудования цеха
  • 2.8.4 Расчёт и выбор труб

Введение

Одной из наиболее актуальных задач в нашей стране является планомерное развитие ее хозяйственно-экономического комплекса. В условиях рыночной экономики главным фактором повышения эффективности национальной экономики становятся не отдельные достижения науки и техники, а высокий научный и технологический уровень всего производственного комплекса. Этот уровень определяется в первую очередь состоянием машиностроения как отрасли. В этом плане встают наиболее остро вопросы, связанные с улучшением, реорганизацией, развитием и модернизацией отрасли в целом и каждого предприятия в отдельности. В свою очередь любая модернизация промышленных машиностроительных предприятий, либо создание новых, ставит первоочередную задачу организации полноценного, экономичного и эффективного электроснабжения производственных мощностей, в том числе станкового парка.

В настоящем курсовом проекте рассматривается некоторый опыт проектирования электроснабжения отдельного участка механического цеха серийного производства, предназначенного для серийного выпуска продукции для завода тяжелого машиностроения.

Курсовой проект состоит из общей и специальной частей. В общей части рассматриваются основные данные помещения, оборудования и т. д. , необходимые для проведения расчетов. В специальной части приведены методы и непосредственно сами расчеты по организации электроснабжения участка цеха машиностроительного производства.

электроснабжение механический цех сеть

1. Общая часть

1.1 Характеристика помещений цеха

Механический цех серийного производства (МЦСП) разделен на следующие участки:

станочное отделение;

трансформаторная подстанция (ТП);

ремонтный участок;

бытовые помещения;

фрезерный участок;

заточной участок;

вентиляционная.

В помещении станочного отделения осуществляется основная производственная деятельность МЦСП, обработка заготовок и деталей. Станочное отделение является сухим помещением с нормальной средой, температура окружающей среды не превышает 30 °C, отсутствует химически активная среда, пожаро- и взрывоопасные вещества. Степень защиты оболочки электрооборудования IP 44.

Характеристики участков по условиям окружающей среды, технологическому назначению, наличию зон пожаро- и взрывоопасности приведены ниже в таблице 1.

Таблица 1 — Характеристики помещений цеха

Наименование участка

Технологическое назначение

Условия окружающей среды

Степень защиты оболочки

трансформация электроэнергии и передача её потребителям

нормальное

пожароопасное, класса П1

станочное отделение

сухое с нормальной средой

пожароопасное класса П-2а

фрезерный участок

обработка деталей из металла на станках

сухое с нормальной средой

пожароопасное класса П-2а

заточной участок

обработка деталей из металла на станках

сухое с нормальной средой

пожароопасное класса П-2а

ремонтный участок

обработка деталей из металла

сухое с нормальной средой

пожароопасное класса П-2а

хранение инструмента, приспособлений, материалов, готовой продукции

сухое с нормальной средой,

пожароопасное класса П-2а

вентиляционная

приток чистого и вытяжка загрязненного воздуха

нормальное

отсутствует

бытовые помещения

Решение орг. вопросов, отдых рабочих

сухое с нормальной средой,

пожароопасное, класса П-2а

1.2 Анализ электропотребителей цеха

В данном цехе используется электрооборудование, которое имеет следующие технологические назначения:

металлообрабатывающее оборудование (токарные, фрезерные станки и т. д.);

подъемно-транспортное оборудование (кран мостовой);

металлообрабатывающие станки (заточный, сверлильный, токарный, шлифовальный, фрезерный, болтонарезной, резьбонарезной станки);

деревообрабатывающие станки;

бытовые приборы (холодильник, электроплита);

сварочное оборудование (сварочный трансформатор, стол сварщика);

санитарно-техническое оборудование (вентиляторы);

Электропотребители подключены на трёхфазное напряжение 380 В (вентиляторы, станки), на однофазное напряжение 220 В (холодильник) и однофазное 380 В (сварочный трансформатор, электроплита). Остальное электрооборудование работает в длительном режиме.

Большинство электроприемников подключено на трехфазное напряжение 380 В (металлообрабатывающее, подъемно-транспортное оборудование), кроме однофазных электроприемников 220 В (наждачные, заточные станки, магнитный дефектоскоп) частотой 50Гц. Электропотребители цеха работают как в длительном режиме (металлообрабатывающее оборудование), так и в повторно-кратковременном (подъемно-транспортное оборудование).

Категорией надёжности электроснабжения называют способность электрической системы обеспечивать предприятие и отдельные объекты электроэнергией надлежащего качества без аварийных перерывов. В отношении обеспечения надежности электроснабжения электроприемники (ЭП) разделяются по правилам устройства электроустановок (ПУЭ) на три категории.

1 категория — к ней относятся электропотребители, перерыв в электроснабжении которых может вызвать угрозу жизни человека, повреждение дорогостоящего оборудования, массовый брак продукции и т. д. Потребители этой категории питаются от двух независимых источников электроэнергии. Перерыв электроснабжения допускается на время автоматического переключения с одного источника на другой.

2 категория — к этой категории относятся электропотребители, перерыв в электроснабжения которых может вызвать массовый недовыпуск продукции и простой рабочих, нарушение жизнедеятельности городских и сельских жителей. Питание потребителей осуществляется от двух независимых источников. При выходе из строя одного источника энергии переключение на другой источник энергии производит выездная оперативная бригада или оперативный персонал.

3 категория — к этой категории относятся электропотребители, которые не относятся к 1-й и 2-й категориям. Потребители этой категории питаются от одного источника электроэнергии, а перерыв их электроснабжения допускается на время не более суток.

Для электроприемников данной категории допустимы перерывы электроснабжения на время, необходимое для включения резервного питания дежурным персоналом или выездной оперативной бригадой. При наличии централизованного резерва допускается питание электроприемников II категории одним трансформатором, т. к перерыв в электроснабжения может вызвать массовый недовыпуск продукции и простой рабочих.

1.4 Исходные данные проектирования

Для выполнения электроснабжения цеха необходимо указать основные показателями цеха, параметры нагрузки цеха и технические параметры электропотребителей, которые заносятся в таблицы 2, 3 и 4 соответственно.

Таблица 2 — Основные показатели цеха

Наименование

Единицы измерения

Величина

Продолжение таблицы 2

2. Высота цеха, Н

3. Число использования максимума нагрузки, Т м

4. Мощность генератора, S Г

5. Индуктивное сопротивление генератора, х Г

о . е .

6. Длинна высоковольтной линии, l

7. Коэффициент мощности энергосистемы,

8. Сопротивление грунта,

9. Агрессивность грунта по отношению к стали

10. Время срабатывания защиты, t з

Таблица 3 — Параметры нагрузки цеха

Наименование

Единицы измерения

Величина

1. Установленная мощность силового оборудования;

2. Коэффициент использования

3. Коэффициент мощности

4. Эффективное число электроприёмников

5. Коэффициент максимума

7. Установленная мощность рабочего освещения

8. Коэффициент спроса

9. Коэффициент мощности

11. Установленная мощность аварийного освещения

12. Коэффициент спроса

Продолжение таблицы 2

13. Коэффициент мощности

Таблица 4 — Техническими параметрами электропотребителей

Наименование ЭП

№ по плану

Количество, шт

Мощность,

1. Карусельно-фрезерный станок

2. Станок заточный 1фазн.

3. Станок наждачный 1фазн.

4. Вентилятор приточный

5. Вентилятор вытяжной

6. Продольно-строгальный станок

7. Плоскошлифовальный станок

8. Продольно-фрезерный станок

9. Резьбонарезной станок

10. Токарно-револьверный станок

11. Полуавтомат фрезерный

21, 22, 23, 24, 25, 26,27, 28

12. Зубофрезерный станок

13. Полуавтомат зубофрезерный

14. Кран мостовой ПВ = 60 %

с osц =0,92

2. Специальная часть

2.1 Выбор способа и схемы электроснабжения распределительных сетей

Распределительной сетью называется сеть от распределительных шкафов до электропотребителей.

Распределительный шкаф (ШР) — это электротехническое устройство, служащие для приёма и распределения электроэнергии между электропотребителями, а также для их защиты от аварийных режимов. Распределительные шкафы устанавливаются, как правило, в центре нагрузок, а также в местах, не мешающих технологическому процессу и удобных для эксплуатации и ремонта. В данном цехе распределительные шкафы располагаются у стен.

Существует 3 схемы выполнения распределительных сетей.

Радиальная схема (рисунок 1) — это схема электроснабжения распределительных сетей, при которой электропотребитель получает питание по своей отдельной линии. Таким образом, при выходе из строя одной питающей линии остальные электропотребители продолжают получать питание. Однако при такой схеме используется большое количество пуско-защитной аппаратуры и кабельной продукции.

Рисунок 1 — Радиальная схема распределительной сети

Магистральная схема (рисунок 2) — это схема электроснабжения распределительных сетей, при которой несколько электропотребителей получают питание от одной линии.

Рисунок 2 — Магистральная схема распределительной сети

Смешанная схема (рисунок 3) — это схема электроснабжения распределительных сетей, при которой электропотребители получают электроэнергию как по радиальной, так и по магистральной схемам.

Рисунок 3 — Смешанная схема распределительной сети

Подключение электропотребителей к распределительным шкафам в механическом цехе производится как по радиальным, так и по смешанным схемам распределительных сетей.

В данном курсовом проекте используется радиальная схема распределительной сети.

Для подключения электропотребителей применяется как открытая (по конструкциям, в коробах), так и скрытая (в трубах подготовки пола) электропроводка. Способ прокладки электропроводки зависит от технологического процесса, условий окружающей среды, наличия пыли, химически активной среды, зон взраво- и пожароопасности. Например, электропроводка в венткамере выполняется открыто в коробе, чтобы защитить проводку от технологической пыли.

2.2 Расчёт электрической нагрузки распределительного шкафа методом упорядоченных диаграмм

Электрической нагрузкой для цеха является силовое оборудование и электроосвещение. Расчёт электрической нагрузки является важным элементом проектирования цехов, предприятий, участков. В зависимости от рассчитанной мощности выбирают число и мощность силовых трансформаторов, марку и сечение питающих линий высокого и низкого напряжения, а также тип пускозащитных аппаратов распределительных шкафов.

Приведён пример расчёта силового оборудования для распределительного шкафа (ШР) № 1 (по плану).

Исходные данные выбираются из таблицы 4 и заносятся в таблицу 5

По справочным данным находятся значения ки, cosц, tgц и заносятся в таблицу 5

Таблица 5 — Данные электропотребителей, подключённых к ШР1

№ по плану

Технологическое название

Полуавтомат фрезерный

Полуавтомат фрезерный

Полуавтомат фрезерный

Полуавтомат фрезерный

Полуавтомат фрезерный

Зубофрезерный станок

Полуавтомат зубофрезерный

Полуавтомат зубофрезерный

Схема распределительного шкафа представлена на рисунке 4.

Рисунок 4 — Принципиальная электрическая схема ШР1

Все ЭП относятся к одной технологической группе.

Определяется активная сменная мощность Рсм, кВт, по формуле Рсм=ku х? Рн1…8 (1)

Рсм=0,12×81,5 = 9,78 кВт Реактивная сменная мощность Qcм, кВАр, определяется по формуле

Qcм= Рсм х tgц (2)

Qcм= 9,78×2,30 =22,494 кВАр Суммарная сменная активная мощность Ш Р Рсм?, кВт определяется по формуле Рсм? = Рсм (3)

Рсм? = 9,78 кВт Суммарная сменная реактивная мощность ШР Qcм?, кВАр определяется по формуле

Qcм? = Qcм (4)

Qcм? = 22,494 кВАр Средневзвешенное значение функции tgц определяется по формуле

tgцсрв = Qcм? / Рсм? (5)

tgцсрв = 22,494/ 9,78 = 2,3

Полная среднесменная мощность ШР1 Scм?, кВА, определяется по формуле

Scм? =v 9,78 І + 22,494І = 24,53 кВА Средневзвешенное значение коэффициента мощности cosцсрв определяется по формуле

cosцсрв = Рсм? / Scм? (7)

cosцсрв = 9,78/24,53 = 0,399

Суммарная установленная мощность Э П Ру?, кВт, подключенных к ШР1, определяется по формуле Ру? =? Рн1+ Рн2+ Рн3+ Рн4+ Рн5+ Рн6+ Рн7+ Рн8 (8)

Ру? = 9,5+9,5+9,5+9,5+9,5+10+12+12 = 81,5 кВт Действительное число ЭП n 8 шт.

Средневзвешенное значение коэффициента использования определяется по формуле

kUсрв = Рсм? / Ру? (9)

kUсрв = 9,78/81,5 = 0,12

Эффективное число ЭП nэф, шт, определяется по формуле

6642, 25

nэф = 839,25 = 7,91

По данным значений nэф и kи срв находится значение коэффициента максимума kм

kм = f (nэф; kUсрв) (11)

kм = f (7,91; 0,12) = 2,59

Активная расчётная мощность ШР1 Рр кВт, определяется по формуле Рр = kм х Рсм? (12)

Рр =2,59×9,78 = 25,33 кВт Реактивная расчётная мощность ШР1 Qр, кВАр, определяется по формуле

Qр = 1,1 х Qcм?, т.к. nэф <10, nэф = 7,91 (13)

Qр = 1,1×22,494 = 24,7434 кВАр Полная реактивная мощность ШР1 Sр, кВа, определяется по формуле

Sр =v 25,33 І + 24,7434 І = 35,41 кВа Расчётный ток ШР1, А, определяется по формуле

Iр = 35,41/1,73×380 = 53,86 А Выбирается Э П с наибольшим пусковым током. Для ШР1 это — ЭП13 (Полуавтомат зубофрезерный). Находится его номинальный ток, А, по формуле

Iн1= 1,73×380×0,4×0,83 = 54,98 А Пусковой ток данного ЭП, А, определяется по формуле

где — коэффициент пуска (для).

In1 = 6×54,98 = 329,88 А Пиковый ток ШР1, А, рассчитывается по формуле

Iпик = 53,86 + 329,88 — 0,12×54,98 = 377,1424 А Данные расчётов заносятся в таблицу 6.

Таблица 6.

Активная сменная суммарная мощность силового оборудования, кВт, определяется по формуле

P см У сил = 710×0,3 = 213 кВт Определяется средневзвешенное значение математической функции силового оборудования соответствующее

при = 0.7 = 0,9 (20)

Реактивная сменная суммарная мощность силового оборудования, кВАр, определяется по формуле

Qcм? сил = 213×1,02 = 217,26 кВАр Активная расчётная мощность силового оборудования, кВт, определяется по формуле Рр сил = P см У сил х kм сил (12)

Рр сил = 213×1,3 = 276,9 кВт Реактивная расчётная мощность силового оборудования, кВАр, определяется по формуле

QР сил = 217,26 кВАр Полная расчётная мощность силового оборудования, кВА, определяется по формуле

Sp сил = v 276,9 І + 217,26 І = 351,96 кВА Расчётный ток силового оборудования, А, определяется по формуле

Iр = 351,96/1,73×380 = 535,38 А Для определения пикового тока силового оборудования находятся номинальный, А, и пусковой, А, токи электропотребителя с максимальным пусковым током по формулам (25), (26), (27) соответственно

Iн сил= 1,73×380×0,8×0,83 = 27,49 А

In1 = 6×27,49 = 164,94 А Пиковый ток силового оборудования, А, определяется по формуле (27)

Iпик сил = 535,38 + 164,94 — 0,12×27,49 = 697, 0212 А

2.4 Расчёт рабочего и аварийного освещения цеха

Расчёт электрической нагрузки производится совместно для рабочего и аварийного освещения. Исходные данные для расчёта приводятся в таблице 8

Таблица 8 — Параметры нагрузки освещения цеха

Активные сменные мощности рабочего, кВт, и аварийного, кВт, освещения определяются по формуле

Pсм РО = 0,9×54 = 48,6 кВт

Pсм АО = 1×11 = 11 кВт Средневзвешенные значения математической функции рабочего и аварийного освещения определяются по соответствующим значениям

Реактивные сменные мощности рабочего, кВАр, и аварийного, кВАр, освещения определяются по формуле (2)

Qcм РО = 48,6×0,48 = 23,33 кВАр

Qcм АО = 11×0 = 0 кВАр Активные расчётные мощности рабочего, кВт, и аварийного, кВт, освещения определяются по формуле

Pр РО = Pсм РО = 48,6 кВт

Pр АО = Pсм АО = 11 кВт Реактивные расчётные мощности рабочего, кВАр, и аварийного, кВАр, освещения определяются по формуле

Qр РО = Qcм РО (31)

Qр РО = Qcм РО = 23,33 кВАр

Qр АО = Qcм АО = 0 кВАр Полные расчётные мощности рабочего, кВА, и аварийного, кВА, освещения определяется по формуле (14)

Sp РО = v 48,6 І + 23,33 І = 53,9 кВА

Sp РО = v 11 І + 0 І = 11 кВА Расчётные токи рабочего, А, и аварийного, А, освещения определяются по формуле (15)

Iр РО = 1,73×0,38 = 81,67 А

Iр РО = 1,73×0,38 = 16,67 А Суммарная активная сменная мощность рабочего и аварийного освещения, кВт, определяются по формуле

Pсм? осв = 48,6 + 11 = 59,6 кВт Суммарная установленная мощность рабочего и аварийного освещения, кВт, определяются по формуле

Pу осв = 54 + 11 = 65 кВт Суммарная реактивная сменная мощность рабочего и аварийного освещения, кВАр, определяются по формуле

(34) Qсм? осв = 23,33 + 0 = 23,33 кВАр Активная расчётная мощность рабочего и аварийного освещения, кВт, определяются по формуле

Pр осв = 59,6 кВт Реактивная расчётная мощность рабочего и аварийного освещения, кВАр, определяются по формуле

Qр осв = 23,33 кВАр

2.5 Компенсация реактивной мощности

Работа машин и аппаратов переменного тока, основанная на принципе электромагнитной индукции, сопровождается процессом непрерывного изменения изменением магнитного потока в их магнитопроводах и полях рассеивания. Поэтому подводимый к ним поток мощности должен содержать не только активную составляющую Р, но и реактивную составляющую индуктивного характера Q, необходимую для создания магнитных полей, без которых процессы преобразования энергии, рода тока и напряжения невозможны.

Компенсация реактивной мощности может выполняться как естественным (уменьшение потребления реактивной мощности), так и искусственным (установка источников реактивной мощности) способами.

2.5.1 Расчёт электрической нагрузки цеха до компенсации

Расчёт полной электрической нагрузки цеха выполняется на основе данных расчёта электрической нагрузки на стороне низкого напряжения КТП и расчёта электрической нагрузки электроосвещения цеха, которые приведены в таблице 9

Таблица 9 — Параметры электрических нагрузок силового оборудования и электроосвещения цеха

Активная установленная мощность цеха, кВт, определяются по формуле

Pу цех = 710 + 54 = 764 кВт Активная сменная суммарная мощность цеха, кВт, определяются по формуле

(38) P см? цех = 196 +59,6 = 255,6 кВт Реактивная сменная суммарная мощность цеха, кВАр, определяются по формуле

Qсм? цех = 217,26 + 23,33 = 240,59 кВАр Полная сменная мощность цеха, кВА, определяются по формуле (6)

Scм цех =v 255,6 І + 240,6І = 351,03 кВА Средневзвешенное значение коэффициента мощности цеха определяются по формуле (7)

сosцсрв цех = 255,6/351,03 = 0,73

Средневзвешенное значение математической функции цеха определяются по формуле (5)

tgцсрв цех = 240,6/ 255,6 = 0,941

Активная расчётная мощность цеха, кВт, определяются по формуле

— коэффициент несовпадения максимума нагрузки для активной мощности.

P р цех = 0,95 х (276,9 + 59,6) = 319,7 кВт Реактивная расчётная мощность цеха, кВАр, определяется по формуле

Qр цех = 0,98 х (217,26 + 23,33) = 235,78 кВАр Полная расчётная мощность цеха, кВА, определяются по формуле (14)

Scм цех =v 319,7 І + 235,78І = 397,24 кВА Расчётный ток цеха, А, определяются по формуле (15)

Iр цех = 397,24/1,73×380 = 604,26 А Пиковый ток цеха, А, определяются по формуле (18)

Iпик цех = 604,26 + 329,88 — 0,12×54,98 = 930,54А

2.5.2 Расчёт и выбор комплектно-конденсаторной установки

Для выбора мощности и типа комплектно-конденсаторных установок используются данные расчёта электрической нагрузки силового оборудования и электроосвещения цеха, которые приведены в таблице 10

Таблица 10 — Параметры электрической нагрузки цеха

Средневзвешенное значение математической функции определяются по определяются по значению функции

Желаемое значение мощности ККУ, кВАр, определяются по формуле

QККУ жел = 255,6 х (0,941 — 0,36) = 148,5 кВАр Из справочных данных выбирается стандартное значение мощности ККУ, кВАр, при условии (43)

Выбирается значение мощности ККУ — 150 кВАр, т.к.150 кВАр‹ 240,59 кВАр.

Реактивная сменная суммарная мощность цеха после компенсации, кВАр, определяются по формуле

Qсм? цех ПК = 240,59 — 150 = 90,59 кВАр Полная сменная суммарная мощность цеха после компенсации, кВА, определяются по формуле (6)

Scм? цех ПК = v 255,6І + 90,59І = 271,18 кВА Определяется средневзвешенное значение коэффициента мощности цеха после компенсации по формуле

(45) сosцсрв ПК = 255,6/ 271,18 = 0,942

Сравниваются полученные значения со значением

0,942? 0,94 — верно Значит, выбирается ККУ с номинальной мощностью 150 кВАр, а её технические данные заносятся в таблицу 11

Таблица 11 — Технические параметры ККУ

Номинальный ток ККУ, А, определяется по формуле

Iн ККУ = 150/ (1,73×0,38) = 288,17 А Реактивная расчётная мощность цеха после компенсации, кВАр, определяется по формуле

Qсм? цех ПК = 235,78 — 150 = 85,78 кВАр Полная расчётная мощность цеха после компенсации, кВА, определяется по формуле (14)

Sр цех ПК = v 319,7І + 85,78І = 331,01 кВА Расчётный ток цеха после компенсации, А, определяются по формуле (15) А, по формуле (25)

Iр цех ПК = 331,01/ (1,73×0,38) = 503,51А Пиковый ток цеха после компенсации, А, определяются по формуле (18)

Iпик цех ПК = 503,51+329,88 — 0,12×54,98 =826,79 А

2.6 Расчёт и выбор числа и мощности силовых трансформаторов

В механическом цеху серийного производства присутствуют электропотребители первой и второй категорий надёжности электроснабжения.

К потребителю первой категории относится аварийное освещение цеха, а к потребителю второй категории — рабочее освещение цеха.

Исходные данные для выполнения расчёта и выбора числа и мощности силовых трансформаторов приводятся в таблице 12

Таблица 12 — Исходные данные для выполнения расчёта и выбора числа и мощности силовых трансформаторов

Средневзвешенное значение математической функции определяются по соответствующему значению

Реактивная сменная суммарная мощность цеха после компенсации, кВАр, определяются по формуле (21)

Qсм? цех ПК = 255,6×0,035 = 8,95 кВАр Полная сменная суммарная мощность цеха после компенсации, кВА, определяются по формуле (6)

S см? цех ПК = v 255,6І + 8,95І = 255,77 кВА Реактивная расчётная мощность цеха после компенсации, кВАр, определяются по формуле (22)

Qр цех ПК = 8,95 кВАр Полная расчётная мощность на стороне низкого напряжения, кВА, определяются по формуле (14)

S р цех ПК = v319,7І + 8,95І = 319,83 кВА Активные, кВт, и реактивные, кВАр, потери мощности в силовом трансформаторе и в высоковольтных линиях, кВт, определяются по формулам

Р Т = 0,02×319,83 = 6,4 кВт

Q Т = 0,1×319,83 = 31,98 кВАр

Р П = 0,03×319,83 = 9,6 кВт Полная расчётная мощность на стороне высокого напряжения, кВА, определяются по формуле

S р ВН = v (319,7 + 6,4 + 9,6) І + (8,95 + 31,98) І = 338,19 кВА Расчётная мощность силового трансформатора, кВА, с учётом коэффициента загрузки определяются по формуле

— допустимый коэффициент нагрузки, который, при преобладании потребителей III категории надёжности электроснабжения, равен 0,92

S Т1 = 338, 19/ 0,92 = 367,59 кВА Выбирается ближайшее большее стандартное значение мощности силового трансформатора, кВА

Определяется фактическое значение коэффициент нагрузки, и сравнивается со значением допустимого коэффициента нагрузки

в Тф = 338, 19/ 400 = 0,85

Сравнивается, при условии

0,92 > 0,85 — верно Значение коэффициента заполнения графика нагрузки, определяется по формуле

Число использования максимума нагрузки, ч, определяется по формуле

По данным значений и, а также по кривым кратностей допустимых нагрузок трансформаторов определяется коэффициент допустимой перегрузки

Расчётная мощность силового трансформатора, кВА, с учётом, определяется по формуле

SТ2 = 297,73 /1,02 = 297,73 кВА С учётом значений SТ1 и SТ2Выбирается стандартное значение мощности силового трансформатора и его технические данные заносятся в таблицу 13

Таблица 13 — Технические данные силового трансформатора

Потери, кВт

Габариты

140 010 801 900

Активная расчётная суммарная мощность потребителей I-й и II-й категорий надёжности электроснабжения, кВт, определяется по формуле

Реактивная расчётная суммарная мощность потребителей I-й и II-й категорий надёжности электроснабжения, кВАр, определяется по формуле

Полная расчётная мощность потребителей I-й и II-й категорий надёжности электроснабжения, кВА, определяется по формуле (14)

Процентное соотношение потребителей I-й и II-й категорий надёжности электроснабжения, %, определяется по формуле

Так как процентное соотношение потребителей I-й и II-й категорий надёжности электроснабжения не превышает 30%, то выбирается 1 силовой трансформатор с резервированием на низкой стороне от ближайшей цеховой трансформаторной подстанции.

2.7 Расчёт и выбор пускозащитной аппаратуры

Пускозащитной аппаратурой называются аппараты, предназначенные для коммутации и защиты электрических сетей от перегрузок и коротких замыканий. К таким аппаратам относятся автоматические выключатели, магнитные пускатели и предохранители.

Автоматические выключатели служат для автоматического размыкания электрических цепей при перегрузках и КЗ, при недопустимых снижениях напряжения, а также для нечастого включения цепей вручную.

Магнитные пускатели предназначены для пуска двигателей и защиты от перегрузок.

Предохранители предназначены для защиты цепей от режимов короткого замыкания и, изредка, от перегрузок.

Ниже приводится схема распределительного шкафа, с установленными в нём защитными аппаратами, питающих и распределительных сетей (Рисунок 5).

Рисунок 5 — Принципиальная электрическая схема ШР1

2.7.1 Выбор предохранителя FU1

Номинальный ток электропотребителя, А, определяется по формуле (16)

Пусковой ток электропотребителя, А, определяется по формуле (17)

Желаемое значение тока плавкой вставки предохранителя, установленного в ящике, А, определяется по формуле

где — коэффициент условий пуска: при тяжёлом пуске = 1,6; при лёгком = 2,5.

По значению выбирается большее стандартное значение тока плавкой вставки предохранителя, А, при условии

Выбирается предохранитель типа ПН — 2 — 150; .

По справочным данным определяется тип предохранителя, которые заносятся в таблицу 14

Таблица 14 — Технические данные ящика 1Я

2.7.2 Выбор типа предохранителей, установленных в распределительных шкафах

Выбора типов предохранителей, установленных в распределительном шкафу, рассматривается на примере предохранителя FU1.

Номинальный ток потребителя, А, который защищается предохранителем, определяется по формуле (25)

Пусковой ток потребителя, А, который защищается предохранителем, определяется по формуле (17)

Желаемое значение тока плавкой вставки предохранителя, А, определяется по формуле (63)

По значению выбирается большее стандартное значение тока плавкой вставки предохранителя, А, при условии (64)

Типы остальных предохранителей определяются аналогично.

Данные расчётов заносятся в таблицу 15

Таблица 15 — Технические данные предохранителей, установленных в ШР1

Продолжение таблицы 15

2.7.3 Выбор типов распределительных шкафов

Выбор распределительных шкафов производится по числу предохранителей, их номинальным токам, степени защиты. Технические данные шкафа ШР1 заносятся в таблицу 16

Таблица 16 — Технические данные распределительного шкафа ШР1

2.8 Расчет и выбор распределительных сетей

Распределительной сетью называется сеть от распределительных шкафов до электропотребителей. Электропотребители подключаются к ШР посредством проводов или кабелей, совокупность которых представляет собой электропроводку. Электропроводка может быть открытой (подвески, лотки, короба и т. д.), так и скрытой, при которой кабеля или провода прокладываются скрыто в кабельных каналах стен и потолков или в трубах подготовки пола.

2.8.1 Выбор сечений проводников по длительно-допустимому току

Для подключения электропотребителей к ШР1 используется скрытая прокладка кабелей в трубах подготовки пола при температуре 25єС. Проводка выполнена кабелем марки ВВГ с тремя фазными и одной нулевой жилами. Жилы кабеля выполнены из меди, изоляция и оболочка — из поливинилхлорида, защитный покров отсутствует. Выбор сечений кабелей рассматривается на примере одного из участков распределительной сети от ШР1 — участка 18Н-1.

Номинальный ток, подключаемого этим кабелем, потребителя, А, определяется по формуле (25)

По справочным данным определяется ближайшее большее значение длительно-допустимого тока, А, к номинальному току ЭП

— условие выполняется

В соответствии со значением, выбирается кабель ВВГ 31,5+11,5 мм².

Выбор сечений проводников остальных участков распределительной сети от ШР2 производится аналогичным способом.

Таблица 17 — Данные выбора сечений проводников распределительной сети

наименование участка

Марка, сечение, мм2

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

ВВГ 31,5+11,5

2.8.2 Проверка выбранных сечений проводников на соответствие защитным аппаратам

Распределительная сеть от ШР1 защищаются предохранителями, установленными в распределительном шкафу.

Для выполнения проверки необходимо знать следующие параметры:

коэффициент защиты, значение которого определяется по справочным данным для определённого защитного аппарата (для предохранителей, т.к. сеть не требует защиты от перегрузок);

ток срабатывания защитного аппарата, А — для предохранителей значение равно значению тока плавкой вставки, А;

значение длительно-допустимого тока, А.

Алгоритм проверки выбранных сечений проводников на соответствие защитным аппаратам приводится на примере одного из участков распределительной сети — участка 21-Н1.

Должно выполняться условие

— условие выполняется

Следовательно, выбранное сечение кабеля соответствует защитному аппарату. Проверка на соответствие других выбранных сечений проводников производится аналогично. Данные проверки заносятся в таблицу 17.

2.8.3 Проверка выбранных сечений проводников на допустимую потерю напряжения

Потерей напряжения называется алгебраическая разность между напряжением источника питания и напряжения в точке подключения электропотребителя. Сумма допустимых потерь напряжения питающей и распределительной сетей не должна превышать 3%.

Для определения потери напряжения данной распределительной сети определяется потеря напряжения на участке от распределительного шкафа № 1 до наиболее удалённого потребителя, то есть на участке 34-Н1.

Удельное сопротивление, определяется по формуле

— удельная проводимость, (для меди).

Удельное реактивное сопротивление, определяется по справочным данным ().

Расчётное значение потери напряжения, %, определяется по формуле

Полученное расчётное значение, %, сравнивается с допустимым значением для распределительных сетей, %, при условии

— условие выполняется

2.8.4 Расчёт и выбор труб

Для скрытой прокладки проводников в трубах подготовки пола применяются стальные (электросварные или водогазопроводные), поливинилхлоридные, полиэтиленовые и полипропиленовые трубы. Выбор материала труб зависит от условий окружающей среды и технологического процесса. Так, например, при прокладке проводки рекомендуется применять стальные трубы- во взрыво- и пожароопасных зонах помещений, ПВХ трубы — при прокладке по трудносгораемым основаниям, а полиэтиленовые и полипропиленовые трубы — только по несгораемым основаниям.

Для подключения электропотребителей к распределительному шкафу № 2 используется трубная прокладка кабелей марки ВВГ с применением поливинилхлоридных и стальных труб. Трубы прокладываются на глубине 0,3 м от уровня чистого пол. Стальные трубы применяются для выполнения выхода кабеля из пола, так как он нуждается в защите от механических повреждений. Подвод кабеля от стальной трубы к электропотребителю выполняется с помощью гибкого ввода.

Для выполнения трубной прокладки электропроводки необходимо составить специальный проектный документ «Трубозаготовительную ведомость», в котором указывается маркировка трассы, материал и диаметр труб, начало и конец трассы, участки трубных заготовок.

Таблица 18 — Трубозаготовительная ведомость

Участки трубной трассы

0,5−90?-6,1−120?-0,5

0,5−90?-1,6−90?-2,7−135?-7,5−135?2−120?-0,3

0,5−90?-3−135?-4,7

0,5−90?-2,6−120?-7,4

0,5−90?-1,6−90?-3,3−135?-5,1−135?-2,8−90?-0,4

0,5−90?-1,6−90?-3,4−135?-1,5

0,5−90?-9,4−120?-0,6

0,5−90?-9,4−120?-0,6

Затем выполняется сводка труб, с указанием материала трубы и диаметра по возрастающей: Труба поливинилхлоридная ТУ6 — 0,5.1646 — 83 Ш 20 мм = 71,6 м Труба стальная газосварная ГОСТ 10 704- — 76 Ш 20 мм = 7,7 м

2.9 Выбор месторасположения и типа комплектной трансформаторной подстанции

Комплектная трансформаторная подстанция (КТП — для внутренней и КТПН — для наружной установки) — подстанция, состоящая из трансформаторов и блоков комплектно распределительных устройств (КРУ или КРУН), поставляемых в собранном или полностью подготовленном для сборки виде.

Силовые трансформаторы подразделяются на сухие, масляные и с заполнением негорючим жидким диэлектриком.

По местонахождению на территории объекта различают следующие трансформаторные подстанции (ТП):

отдельно стоящие на расстоянии от зданий;

пристроенные, непосредственно примыкающие к основному зданию снаружи;

встроенные, находящиеся в отдельных помещениях внутри здания, но с выкаткой трансформаторов наружу;

внутрицеховые, расположенные внутри производственных зданий с

размещением электрооборудования непосредственно в производственном или

отдельном закрытом помещении с выкаткой электрооборудования в цех.

2.10. Выбор схемы электроснабжения и расчёт питающих сетей напряжением до 1 кВ

Питающей сетью называется сеть от распределительного устройства трансформаторной подстанции до распределительных шкафов, щитков освещения, мощных электропотребителей.

Питающая сеть цеха изображена на рисунке 9.

Рисунок 9 — Схема электроснабжения питающей сети

Данные для расчёта приводятся в таблице 19

Таблица 19 — Данные расчётных и пиковых токов питающей сети

2.10.1 Расчёт и выбор типов номинальных параметров автоматических выключателей

Автоматические выключатели применяются в сети электроснабжения для защиты их от аварийных режимов работы (перегрузок, КЗ и т. д.). Алгоритм выбора типа и номинальных параметров автоматических выключателей рассматривается на примере автомата.

Должно выполняться условие

Определяется желаемое значение тока срабатывания теплового элемента, А, по формуле

Определяется желаемое значение тока магнитного расцепителя, А, по формуле

Должно выполняться условие

где — стандартное значение тока срабатывания теплового элемента, значение которого определяется по справочным данным.

Стандартное значение тока магнитного расцепителя, А, определяется по формуле

где k — коэффициент отсечки, значение которого определяется по справочным данным.

Должно выполняться условие

По справочным данным определяются тип и номинальные параметры автоматического выключателя. Типы остальных автоматических выключателей определяются аналогично. Данные расчётов заносятся в таблицу 20.

Таблица 20 — Тип и номинальные параметры автоматических выключателей

Тип шкафа

Название автомата

обозначения

Тип выключателя

Тип нагрузхок

1.25-Iпик. А

Магистраль

линейный

линейный

линейный

линейный

линейный

линейный

линейный

2.10.2. Расчёт и выбор питающих сетей напряжением до 1 кВ

Питающие сети данного цеха выполняются кабелям марки АНРГ.

Пример выбор сечения кабеля питающей линии рассматривается на примере участка М1. Данный участок выполнен кабелем марки АНРГ, приложенным открыто в воздухе на кабельных подвесках при температуре 25єС. Выбор сечения производится по длительно-допустимому току. Данные для выбора приведены в таблице 19.

По справочным данным определяется ближайшее большее значение длительно-допустимого тока, А, при условии

— условие выполняется

В соответствии со значением, выбирается кабель АНРГ 3120+135 мм2.

Выбор сечений остальных кабелей питающей сети осуществляется подобным образом.

Выбранное сечение кабеля проверяется на соответствие защитному аппарату — автоматическому выключателю QF2 (по рисунку 9).

Должно выполняться условие

— условие выполняется

Следовательно, выбранное сечение кабеля соответствует защитному аппарату.

Определяется расчётное значение потери напряжения, %, по формуле (68)

— удельное сопротивление, значение которого определяется по формуле (67)

— удельное реактивное сопротивление, значение которого определяется по справочным данным (для кабельной линии до 1 кВ,).

Значение математической функции определяется по соответствующему значению

Полученное расчётное значение, %, сравнивается с допустимым значением для распределительных сетей, % при условии — условие выполняется

Следовательно, выбранное сечение кабеля удовлетворяет требованиям.

2.11 Расчёт выбор питающей сети высокого напряжения

Высоковольтный кабель предназначен для передачи электроэнергии от центральной распределительной подстанции (ЦРП) до трансформаторной подстанции (ТП). Выбор марки и сечения высоковольтного кабеля зависит от условий прокладки, условий окружающей среды и коррозии.

Для подключения комплектно-трансформаторной подстанции применяется высоковольтный кабель марки ААП2ЛШВУ, то есть кабель с алюминиевыми жилами, усовершенствованной бумажной изоляцией, алюминиевой оболочкой.

Бронь из плоской металлической. Кабель прокладывается в земле в траншее один при. Длина кабеля равна 0,9 км. Грунт агрессивен по отношению к стали.

Выбор сечения кабеля производится по длительно-допустимому току и экономической плотности тока.

Значение тока, протекающего по высокой стороне трансформатора, А, определяется по формуле

По справочным данным определяется ближайшее большее значение длительно-допустимого тока, А, к току

При этом должно выполняться условие

— условие выполняется

В соответствии со значением, выбирается кабель ААП2ЛШВУ 310 мм2 — 6кВ.

Определяется желаемое значение сечения кабеля по экономической плотности тока, мм2, по формуле

где — экономическая плотность, значение которой определяется по таблице

Из числа стандартных значений сечений кабелей выбирается ближайшее большее к значению, мм2, при условии

Следовательно, выбирается кабель м. ААП2ЛШВУ 335 мм2 — 6 кВ.

Из найденных значений сечений кабеля по длительно-допустимому току и экономической плотности тока выбирается большее

Следовательно, выбирается кабель ААП2ЛШВУ 335 мм2 — 6кВ.

Расчётное значение потери напряжения, %, определяется по формуле (68)

где определяется по формуле (67)

определяется по справочным данным (для кабельной линии 6 кВ и сечении кабеля 35 мм2).

Значение математической функции определяется по соответствующему значению

Полученное расчётное значение, %, сравнивается с допустимым значением для питающих сетей, % - условие выполняется

Следовательно, выбранное сечение кабеля удовлетворяет требованиям.

Затем определяется расчётное значение суммарной потере напряжения в сетях электроснабжения, %, по формуле

Полученное расчётное значение, %, сравнивается с допустимым суммарным значением для распределительных, питающих сетей и высоковольтных линий, % - верно.

2.12 Расчёт и выбор заземляющего устройства

Для заземления устройств можно использовать как естественные (водопроводные и другие металлические трубы, кроме трубопроводов с горючими веществами), так и искусственные заземлители (стальные стержни, забитые в грунт и соединенные между собой стальной полосой).

Для заземления электрооборудования КТП данного цеха применяются искусственные заземлители — стальные прутья, забитые в грунт и соединённые между собой горизонтальным заземлителем (полосовой сталью), проложенным на глубине 0,6 м. Исходные данные для расчёта приведены в таблице 21

Таблица 26 — исходные данные расчёта и выбора заземляющего устройства

Ток замыкания на землю, А, определяется по формуле

Определяется расчётное сопротивление заземляющего устройства, Ом

В соответствие с ПУЭ определяется величина сопротивления заземляющего устройства, Ом, общего для установок высокого и низкого напряжения

Так как заземлитель выполнен из круглой стали диаметром 20 мм и длиной 5 м каждый, то его сопротивление определяется по формуле

Так как длина вертикальных заземлителей l и расстояние между ними a равны 5 м, то коэффициент экранирования, определяется по формуле

Затем, определяется количество заземлителей п, шт, по формуле

Так как шт, то необходимо учитывать сопротивление горизонтального заземлителя

Определяется длина горизонтальной полосы, м, по формуле

Определяется необходимое сопротивление вертикальных заземлителей, Ом, по формуле

Определяется уточнённое количество вертикальных заземлителей, шт, по формуле

Список использованных источников

1. Барыбин Ю. Г. , Крупович В. Н. Справочник по проектированию электроснабжения. — М.: Энергия, 1990 г.

2. Барыбин Ю. Г. , Федоров Л. Е. Справочник по проектированию электрических сетей и электрооборудования. — М.: Энергия, 1990 г.

3. Конюхова Е. А. Электроснабжение объектов. — М.: Издательство «Мастерство»; Высшая школа, 2001 г.

4. Липкин Б. Ю. Электроснабжение промышленных предприятий. — М.: Высшая школа, 1990 г.

5. Постников Н. П. Электроснабжение промышленных предприятий. — М.: Стройиздат, 1990 г.

6. Правила устройства электроустановок (ПУЭ). — М.: Энергоатомиздат, 2002 г.

7. Сибикин Ю. Д. , Яшков В. А. Электроснабжение предприятий и установок нефтяной промышленности. — М.: ОАО «Издательство «Недра», 1997 г.

Факультет - ЭНИН Направление - Электротехника, электромеханика и электротехнологии. Исполнитель: Студент группы 7А96 Покояков Р.А. Проверил доцент: Томск - 2011. В реле РТ-40 (рис.1) использована одна из разновидностей электромагнитных систем, называемая системой с поперечным движением якоря. Магнитная система реле состоит из П-образного шихтованного магнитопровода 1 рис. 1,а и Г-образного якоря...

Контрольная

При анализе усилителей выделяют 2 режима: Усилительный каскад на биполярном транзисторе включенном по схеме с общим эмиттером Принцип работы. Режим покоя: источник питания создает постоянные токи базы эмиттера и коллектора. Постоянный ток базы замыкается в корпусе: +ЕК > R1 > Б > Э > RЭ > L > -ЕК > +ЕК Ток базы приоткрывает на половину транзистор, появляется постоянный ток коллектора или...

Если самоорганизация в простейшей форме может возникнуть уже в физико-химических системах, то вполне обоснованно предположить, что более сложноорганизованные системы могли появиться также в результате специфического, качественно отличного во многих отношениях, но родственного по характеру процесса самоорганизации. С этой точки зрения и возникновение жизни на Земле вряд ли можно рассматривать как...



Документы