Что мешает людям летать в космосе со скоростью света. Как космические корабли бороздят звездные просторы

Одним из величайших достояний человечества является международная космическая станция, или МКС. Для ее создания и работы на орбите объединилось несколько государств: Россия, некоторые страны Европы, Канада, Япония и США. Этот аппарат свидетельствует о том, что можно добиться многого, если постоянно сотрудничать странам. Об этой станции знают все люди планеты и многие задаются вопросами о том, на какой высоте летает МКС и по какой орбите. Сколько космонавтов там побывало? А правда ли, что туда пускают туристов? И это далеко не все, что интересно человечеству.

Строение станции

МКС состоит из четырнадцати модулей, в которых располагаются лаборатории, склады, комнаты отдыха, спальни, хозпомещения. На станции даже имеется спортзал с тренажерами. Весь этот комплекс работает на солнечных батареях. Они огромны, величиной со стадион.

Факты об МКС

За время своей работы станция вызывала немало восхищений. Этот аппарат является величайшим достижением человеческих умов. По своей конструкции, назначению и особенностям его можно назвать совершенством. Конечно, может быть, лет через 100 на Земле начнут строить космические корабли другого плана, но пока что, на сегодняшний день, этот аппарат - достояние человечества. Об этом свидетельствуют следующие факты об МКС:

  1. За время своего ее существования на МКС космонавтов побывало около двухсот. Также здесь были туристы, которые просто прилетели посмотреть на Вселенную с орбитальной высоты.
  2. Станцию видно с Земли невооруженным глазом. Эта конструкция является самой большой среди искусственных спутников, и ее легко можно увидеть с поверхности планеты без какого-то увеличивающего устройства. Есть карты, на которых можно посмотреть, в какое время и когда аппарат пролетает над городами. По ним легко отыскать сведения о своем населенном пункте: увидеть расписание полета над регионом.
  3. Для сборки станции и поддержания ее в рабочем состоянии космонавты вышли более 150 раз в открытый космос, проведя там около тысячи часов.
  4. Управляется аппарат шестью астронавтами. Система жизнеобеспечения обеспечивает непрерывное присутствие на станции людей с момента ее первого запуска.
  5. Международная космическая станция - это уникальное место, где проводятся самые разные лабораторные эксперименты. Ученые делают уникальные открытия в области медицины, биологии, химии и физики, физиологии и метеонаблюдений, а также в других областях науки.
  6. На аппарате используются гигантские солнечные батареи, размер которых достигает площади территории футбольного поля с его конечными зонами. Их вес - почти триста тысяч килограмм.
  7. Батареи способны полностью обеспечивать работу станции. За их работой тщательно следят.
  8. На станции есть мини-дом, оснащенный двумя ванными и спортзалом.
  9. За полетом следят с Земли. Для контроля разработаны программы, состоящие из миллионов строк кода.

Космонавты

С декабря 2017 года экипаж МКС состоит из следующих астрономов и космонавтов:

  • Антон Шкаплеров - командир МКС-55. Он дважды был на станции - в 2011-2012 и в 2014-2015 гг. За 2 полета он прожил на станции 364 дня.
  • Скит Тингл - бортинженер, астронавт НАСА. Этот космонавт не имеет опыта космических полетов.
  • Норишиге Канаи - бортинженер, астронавт Японии.
  • Александр Мисуркин. Первый его полет был совершен в 2013 году длительностью 166 суток.
  • Макр Ванде Хай не имеет опыта полетов.
  • Джозеф Акаба. Первый полет совершил в 2009 году в составе «Дискавери», а второй полет был осуществлен в 2012 году.

Земля из космоса

Из космоса на Землю открываются уникальные виды. Об этом свидетельствуют фотографии, видеосъемки астронавтов и космонавтов. Увидеть работу станции, космические пейзажи можно, если посмотреть онлайн-трансляции со станции МКС. Однако некоторые камеры бывают выключенными, что связано с техработами.

Вниманию читателей представлены самые быстрые ракеты в мире за всю историю создания.

Скорость 3,8 км/с

Самая быстрая ракета средней баллистической дальности с максимальной скоростью 3,8 км в секунду открывает рейтинг самых быстрых ракет в мире. Р-12У являлся модифицированным вариантом Р-12. Ракета отличалась от прототипа отсутствием промежуточного днища в баке окислителя и некоторыми незначительными изменениями конструкции - в шахте нет ветровых нагрузок, что позволило облегчить баки и сухие отсеки ракеты и отказаться от стабилизаторов. С 1976 года ракеты Р-12 и Р-12У начали сниматься с вооружения и заменяться на подвижные грунтовые комплексы «Пионер». Они были сняты с вооружения в июне 1989 года, и в период по 21 мая 1990 года на базе Лесная в Белоруссии были уничтожены 149 ракет.

Скорость 5,8 км/с

Одна из самых быстрых американских ракет-носителей с максимальной скоростью 5,8 км в секунду. Является первой разработанной межконтинентальной баллистической ракетой, принятой на вооружение США. Разрабатывалась в рамках программы MX-1593 с 1951 года. Составляла основу ядерного арсенала ВВС США в 1959-1964 годах, но затем была быстро снята с вооружения в связи с появлением более совершенной ракеты «Минитмэн». Послужила основой для создания семейства космических ракет-носителей Атлас, эксплуатирующегося с 1959 и поныне.

Скорость 6 км/с

UGM -133 A Trident II - американская трехступенчатая баллистическая ракета, одна из самых быстрых в мире. Её максимальная скорость составляет 6 км в секунду. “Трезубец-2” разрабатывался с 1977 года параллельно с более легким “Трайдентом-1”. Принят на вооружение в 1990 году. Стартовая масса - 59 тонн. Макс. забрасываемый вес - 2,8 тонны при дальности пуска 7800 км. Максимальная дальность полета при уменьшенном числе боевых блоков - 11 300 км.

Скорость 6 км/с

Одна из самых быстрых твердотопливных баллистических ракет в мире, стоящая на вооружении России. Имеет минимальный радиус поражения 8000 км, примерную скорость 6 км/с. Разработка ракеты ведётся с 1998 года Московским институтом теплотехники, разработавшим в 1989-1997 гг. ракету наземного базирования «Тополь-М». К настоящему времени произведено 24 испытательных пусков «Булавы», пятнадцать из них признаны успешными (в ходе первого пуска запускался массогабаритный макет ракеты), два (седьмой и восьмой) - частично успешными. Последний испытательный пуск ракеты состоялся 27 сентября 2016 года.

Скорость 6,7 км/с

Minuteman LGM -30 G - одна из самых быстрых межконтинентальных баллистических ракет наземного базирования в мире. Её скорость составляет 6,7 км в секунду. LGM-30G «Минитмэн» III имеет расчетную дальность полета от 6000 километров до 10 000 километров в зависимости от типа боеголовки. Минитмен-3 стоит на вооружении США с 1970 года по сегодняшний день. Она является единственной ракетой шахтного базирования в США. Первый пуск ракеты состоялся в феврале 1961 года, модификации II и III были запущены в 1964 году и 1968 соответственно. Ракета весит около 34 473 килограмм, оснащена тремя твердотопливными двигателями. Планируется, что ракета будет стоять на вооружении вплоть до 2020 года.

Скорость 7 км/с

Самая быстрая противоракета в мире, предназначенная для поражения высокоманевренных целей и высотных гиперзвуковых ракет. Испытания серии 53Т6 комплекса «Амур» были начаты в 1989 году. Её скорость составляет 5 км в секунду. Ракета представляет собой 12-метровый остроконечный конус без выступающих частей. Ее корпус изготовлен из высокопрочных сталей с использованием намотки из композиционных материалов. Конструкция ракеты позволяет выдерживать большие перегрузки. Перехватчик стартует со 100-кратным ускорением и способен перехватывать цели, летящие со скоростью до 7 км в секунду.

Скорость 7,3 км/с

Самая мощная и быстрая ядерная ракета в мире со скоростью 7,3 км в секунду. Предназначена она, прежде всего, для того чтобы разрушать самые укрепленные командные пункты, шахты баллистических ракет и авиабазы. Ядерная взрывчатка одной ракеты может разрушить большой город, весьма большую часть США. Точность попадания – около 200-250 метров. Ракета размещается в самых прочных в мире шахтах. SS-18 несет 16 платформ, одна из которых загружена ложными целями. Выходя на высокую орбиту все головки «Сатаны» идут «в облаке» ложных целей и практически не идентифицируются радарами».

Скорость 7,9 км/с

Межконтинентальная баллистическая ракета (DF-5A) с максимальной скоростью 7,9 км в секунду открывает тройку самых быстрых в мире. Китайская МБР DF-5 поступила в эксплуатацию в 1981 году. Она может нести огромную боеголовку на 5 мт и имеет диапазон более чем 12,000 км. У DF-5 отклонение приблизительно в 1 км, что означает, что у ракеты одна цель - уничтожать города. Размер боеголовки, отклонение и факт, что на её полную подготовку к запуску требуется всего час, все это означают, что DF-5 - карательное оружие, предназначенное для наказания любых потенциальных нападающих. Версия 5A имеет увеличенный диапазон, улучшение отклонения на 300 м и способность нести несколько боеголовок.

Р-7 Скорость 7,9 км/с

Р-7 - советская, первая межконтинентальная баллистическая ракета, одна из самых быстрых в мире. Ее предельная скорость составляет 7,9 км в секунду. Разработку и выпуск первых экземпляров ракеты осуществило в 1956-1957 годах подмосковное предприятие ОКБ-1. После успешных пусков она была использована в 1957 году для запуска первых в мире искусственных спутников Земли. С тех пор ракеты-носители семейства Р-7 активно применяются для запуска космических аппаратов различного назначения, а с 1961 года эти ракеты-носители широко используются в пилотируемой космонавтике. На основе Р-7 было создано целое семейство ракет-носителей. С 1957 по 2000 год выполнены запуски более 1800 ракет-носителей на базе Р-7, из них более 97 % стали успешными.

Скорость 7,9 км/с

РТ-2ПМ2 «Тополь-М» (15Ж65) - самая быстрая межконтинентальная баллистическая ракета в мире с максимальной скоростью 7,9 км в секунду. Предельная дальность - 11 000 км. Несёт один термоядерный боевой блок мощностью 550 кт. В шахтном варианте базирования принята на вооружение в 2000 году. Метод старта - миномётный. Маршевый твёрдотопливный двигатель ракеты позволяет ей набирать скорость намного быстрее предыдущих типов ракет аналогичного класса, созданных в России и Советском Союзе. Это значительно затрудняет её перехват средствами ПРО на активном участке полёта.

Освоение космоса уже давно стало вполне обыденным делом для человечества. Но полеты на околоземную орбиту и к иным звездам немыслимы без устройств, позволяющих преодолевать земное притяжение – ракет. Многие ли из нас знают: как устроен и функционирует ракета-носитель, откуда происходит запуск и какова её скорость, позволяющая преодолеть притяжение планеты и в безвоздушном пространстве. Давайте подробнее разберемся в этих вопросах.

Устройство

Чтобы уяснить как работает ракета-носитель следует разобраться в её устройстве. Начнем описание узлов сверху к его нижней части.

САС

Аппарат, выводящий на орбиту спутник или грузовой отсек всегда отличает от носителя, который предназначен для транспортировки экипажа его конфигурация. У последнего в самом верху расположена специальная система аварийного спасения, служащая для эвакуации отсека с космонавтов при поломке ракета-носителя. Эта нестандартной формы башенка, размещенная на самом верху, является миниатюрной ракетой, позволяющей "вытянуть” капсулу с людьми вверх при экстраординарных обстоятельствах и сместить её на безопасное расстояние от точки аварии. Это актуально в начальной стадии полета, где ещё есть возможность провести парашютный спуск капсулы. В безвоздушном пространстве роль САС становиться не столь важна. В околоземном пространстве спасти космонавтов позволит функция, дающая возможность отделить от ракета-носителя спускаемый аппарат.

Грузовой отсек

Ниже САС расположен отсек, несущий полезную нагрузку: пилотируемый аппарат, спутник, грузовой отсек. Исходя от типа и класса ракета-носителя, масса выводимого на орбиту груза, может колебаться от 1,95 до 22,4 тонн. Весь транспортируемый кораблем груз защищен головным обтекателем, который сбрасывается после прохождения атмосферных слоёв.

Маршевый двигатель

Далекие от космоса люди думают, что если ракета оказалась в безвоздушном пространстве, на высоте ста километров, где начинается невесомость, то на этом её миссия окончена. На самом деле в зависимости от задачи, целевая орбита, выводимого в космос груза может находиться значительно дальше. Например, телекоммуникационные спутники необходимо транспортировать на орбиту, находящуюся на высоте более 35 тысяч километров. Чтобы достичь необходимого удаления и нужен маршевый двигатель, или как его по-другому называют – разгонный блок. Для выхода на запланированную межпланетную или отлетную траекторию следует не один раз менять скоростной режим полета, осуществляя определенные действия, поэтому этот двигатель должен неоднократно запускаться и выключаться, в этом его несходство с прочими аналогичными узлами ракеты.

Многоступенчатость

У ракета-носителя лишь малую долю его массы занимает транспортируемая полезная нагрузка, всё остальное – двигатели и топливные баки, которые расположены в разных ступенях аппарата. Конструктивной особенностью этих узлов является возможность их отделения после выработки топлива. После чего они сгорают в атмосфере, не достигая земли. Правда, как гласит новостной портал reactor.space , в последние годы была разработана технология, позволяющая возвращать в отведенную для этого точку отделившиеся ступеням невредимыми и вновь запускать их в космос. В ракетостроении при создании многоступенчатых кораблей используется две схемы:

  • Первая – продольная, позволяет размещать вокруг корпуса несколько одинаковых двигателей с топливом, одновременно включающихся и синхронно сбрасывающихся после использования.

  • Вторая – поперечная, дает возможность располагать ступени по возрастающей одну выше другой. В этом случае их включение происходит исключительно после сброса нижней, отработанной ступени.

Но часто конструкторы отдают предпочтение сочетанию поперечно-продольной схеме. Ступеней у ракеты может быть много, но увеличение их числа рационально до определенного предела. Их рост влечет за собой увеличение массы двигателей и переходников, работающих только на определенной стадии полета. Поэтому современные ракета-носители не комплектуются более чем четырьмя ступенями. В основном топливные баки ступеней состоят из резервуаров, в которых закачивается разные компоненты: окислитель (жидкий кислород, тетроксид азота) и горючее (жидкий водород, гептил). Только при их взаимодействии можно разогнать ракету до нужной скорости.

С какой скоростью летит ракета в космосе

В зависимости от задач, которые должен выполнить ракета-носитель ее скорость может разнится, подразделяясь на четыре величины:


  • Первая космическая. Она позволяет подняться на орбиту где она становиться спутником Земли. Если перевести на привычные значения, она равняется 8 км/с.

  • Вторая космическая. Скорость в 11,2 км/с. дает возможность преодолеть кораблю земное притяжение для исследований планет нашей солнечной системы.

  • Третья космическая. Придерживаясь скорости 16,650 км/с. можно преодолеть тяготение солнечной системы и покинуть её пределы.

  • Четвертая космическая. Развив скорость 550 км/с. ракета способна улететь за пределы галактики.

Но как бы ни были велики скорости космических аппаратов, для межпланетных путешествий они слишком малы. При таких значениях до ближайшей звезды придется добираться 18 000 лет.

Как называется место откуда запускают в космос ракеты

Для успешного покорения космоса необходимы специальные стартовые площадки, откуда можно запускать ракеты в космическое пространство. В повседневном обиходе их называют космодромами. Но это простое название включает в себя целый комплекс строений, занимающий огромные территории: стартовый стол, помещения для конечного испытания и сборки ракеты, здания сопутствующих служб. Всё это расположено в отдалении друг от друга, чтобы при аварии не пострадали другие сооружения космодрома.

Заключение

Чем более совершенствуются космические технологии, тем более сложным становится строение и работа ракеты. Может через несколько лет, будут созданы новые аппараты, для преодоления притяжения Земли. И следующая статья будет посвящена принципам работы более совершенной ракеты.

Чтобы преодолеть силу земного притяжения и вывести космический аппарат на орбиту Земли, ракета должна лететь со скоростью не менее 8 километров в секунду . Это и есть первая космическая скорость. Аппарат, которому сообщается первая космическая скорость, после отрыва от Земли становится искусственным спутником, то есть двигается вокруг планеты по круговой орбите. Если же аппарату сообщить скорость меньше первой космической, то он будет двигаться по траектории, которая пересекается с поверхностью земного шара. Иначе говоря, он упадет на Землю.


Снарядам A и B сообщается скорость ниже первой космической - они упадут на Землю;
снаряду C, которому сообщили первую космическую скорость, выйдет на круговую орбиту

Но для такого полета необходимо очень много топлива. 3а пару минут реактивный, двигатель съедает его целую железнодорожную цистерну, а для того, чтобы придать ракете необходимый разгон, требуется огромный железнодорожный состав топлива.

Заправочных станций в космосе нет, поэтому приходится все горючее брать с собой.

Баки с топливом очень велики и тяжелы. Когда баки опустеют, они становятся лишним грузом для ракеты. Ученые придумали способ избавляться от ненужной тяжести. Ракета собирается как конструктор и состоит из нескольких уровней, или ступеней. Каждая ступень имеет свой двигатель и свой запас топлива.

Первая ступень тяжелее всех. Здесь находится самый мощный двигатель и больше всего топлива. Она должна сдвинуть ракету с места и придать ей необходимый разгон. Когда топливо первой ступени израсходуется, она отсоединяется от ракеты и падает на землю, ракета становится легче, и ей не надо тратить дополнительное топливо на перевозку пустых баков.

Затем включаются двигатели второй ступени, которая меньше первой, так как ей нужно тратить меньше энергии на подъем космического аппарата. Когда баки с горючим опустеют, и эта ступень «отстегнется» от ракеты. Затем вступит в действие третья, четвертая...

После окончания работы последней ступени космический аппарат оказывается на орбите. Он может летать вокруг Земли очень долго, не затрачивая при этом ни капли топлива.

С помощью таких ракет отправляются в полет космонавты, спутники, межпланетные автоматические станции.

А знаете ли вы...

Первая космическая скорость зависит от массы небесного тела. Для Меркурия, масса которого в 20 раз меньше, чем у Земли, она равна 3,5 километров в секунду, а для Юпитера, масса которого больше массы Земли в 318 раз - почти 42 километра в секунду!

11.06.2010 00:10

Американский космический корабль Dawn недавно установил новый рекорд набора скорости — 25,5 тысячи км/час, опередив своего главного конкурента — зонд Deep Space 1. Такое достижение стало возможным благодаря установленному на аппарате сверхмощному ионному двигателю. Однако, по мнению специалистов NASA, это еще далеко не предел его возможностей.

Скорость американского космического аппарата Dawn достигла 5 июня рекордной величины — 25,5 тысячи км/час. Однако, по мнению ученых, в ближайшее время скорость корабля доберется и до отметки в 100 тысяч км/час.

Таким образом, благодаря уникальному двигателю, Dawn обошел своего предшественника — зонд Deep Space 1, экспериментальный автоматический космический аппарат, запущенный 24 октября 1998 года ракетой-носителем. Правда, Deep Space 1 пока сохраняет за собой звание станции, двигатели которой работали дольше всего. Но опередить "конкурента" в этой категории Dawn может уже в августе.

Основной задачей космического корабля, запущенного три года назад, является изучение астероида 4 Веста, к которому аппарат приблизится в 2011 году, и карликовой планеты Церера. Ученые надеются получить максимально точные данные о форме, размерах, массе, минеральном и элементном составе этих объектов, расположенных между орбитами Юпитера и Марса. Общий путь, который предстоит преодолеть аппарату Dawn, составляет 4 миллиарда 800 миллионов километров.

Так как в космическом пространстве нет воздуха, разогнавшись, корабль продолжает двигаться с набранной скоростью. На Земле это невозможно из-за замедления при трении. Использование в условиях безвоздушного пространства ионных двигателей позволило ученым сделать процесс постепенного приращения скорости космического аппарата Dawn максимально эффективным.

Принцип работы инновационного двигателя заключается в ионизации газа и его разгоне электростатическим полем. При этом, благодаря высокому отношению заряда к массе, становится возможным разогнать ионы до очень высоких скоростей. Таким образом, в двигателе можно достичь очень большого удельного импульса, что позволяет значительно уменьшить расход реактивной массы ионизированного газа (по сравнению с химической реакцией), но требует больших затрат энергии.

Три двигателя аппарата Dawn работают не постоянно, а включаются ненадолго в определенные моменты полета. К настоящему моменту они проработали в общей сложности 620 дней и израсходовали свыше 165 килограммов ксенона. Несложные расчеты показывают, что скорость зонда увеличивалась примерно на 100 км/ч каждые четыре дня. К концу восьмилетней миссии Dawn (хотя специалисты не исключают ее продления) суммарное время работы двигателей составит 2000 дней — почти 5,5 года. Такие показатели сулят, что скорость космического корабля достигнет 38,6 тысячи км/час.

Это может показаться небольшой величиной на фоне хотя бы первой космической скорости, с которой запускаются искусственные спутники Земли, но для межпланетного аппарата без каких-либо внешних ускорителей, не совершающего специальные маневры в гравитационном поле планет, такой результат и в самом деле примечателен.



Документы