Большая энциклопедия нефти и газа. Параметрический метод ценообразования

Сущностью метода является выявление и устранение физических противоречий, присущих исходной системе.

Физическими противоречия - это взаимоисключающие требования, предъявляемые к элементу системы, состоящие в том, что один из характеризующих его параметров должен иметь два различных значения. При этом параметр элемента называется узловым параметром, а характеризуемый им элемент – узловым элементом.

Очевидно, что для одновременного улучшения каких-либо двух противоречивых показателей системы необходимо заменить соответствующий им узловой элемент объектом, удовлетворяющим требованиям, зафиксированном в физическом противоречии.

В общем случае базу параметрического метода образуют системы, выполняющие ту или иную функцию и удовлетворяющие требованиям какого-либо физического противоречия.

Применение метода возможно в двух вариантах: эвристический (с «ручным» алгоритмом поисковых задач) и направленный (с применением «машинных» алгоритмов).

Все элементы базы эвристического варианта параметрического метода описываются только по одному признаку – «удовлетворять требованиям физического противоречия». А признак «выполнять функцию …» определяется пользователем в результате анализа производных систем на предмет однофункциональности с исходной системой.

В основу формирования базы данных положен принцип выбора из множества объектов с парными свойствами, т. е. объектов, удовлетворяющих требованиям соответствующего физического противоречия.

В описании объекта с парными свойствами указывают как сами эти свойства, так и условия их реализации.

14 приемов устранения эвристических противоречий. Чем меньше номер приема, тем выше вероятность с его помощью устранить физические противоречия.

Прием 1. Заменить узловой элемент системой, состоящей из двух элементов, каждый из которых характеризуется одним из значений параметра, указанного в формуле физического противоречия (ФФП).

Прием 2. заменить узловой элемент объектом, различные части которого имеют различные значения параметра, указанного в ФФП.

Прием 3. Заменить узловой элемент системой, состоящей из множества одинаковых элементов, каждый из которых характеризуется одним значением параметра, указанного в ФФП, а система в целом - другим значением.

Прием 4 Заменить узловой элемент объектом, который характеризуется двумя параметрами, аналогичными узловому параметру, каждый из которых имеет одно из значений, указанных в ФФП.

Прием 5. Изменить условия в которых находится узловой элемент, таким образом, чтобы его различные части имели различные значения параметра, указанного в ФФП.

Прием 6. Изменить условия, в которых находится узловой элемент, т.о., чтобы на различных стадиях жизненного цикла исходной системы он характеризовался различными значениями параметра, указанного в ФФП.

Прием 7. Заменить узловой элемент объектом, который на различных стадиях жизненного цикла исходной системы характеризуется различными значениями параметра, указанного в ФФП.

Прием 8. Заменить узловой элемент объектом, который претерпевает превращение в другой объект, при этом каждый из них характеризуется одним из значений, указанных в ФФП.

Прием 9. Включить узловой элемент в состав системы, которая характеризуется одним значением параметра, указанного в ФФП, а узловой элемент – другим значением.

Прием 10. Заменить узловой элемент объектом, который характеризуется параметром, аналогичным узловому параметру, с таким значением, что его по отношению к различным внешним объектам можно было бы считать «различным».

Прием 11. Изменить условия, в которых находится узловой элемент, т.о., чтобы он превратился в другой объект, причем перед превращением он характеризовался бы одним значением параметра, указанным в ФФП, а после превращения - другим значением.

Прием 12. Изменить условия, в которых находится узловой элемент, т.о., чтобы одна из его частей претерпевала превращения в другой объект, который характеризовался бы одним значением параметра, указанным в ФФП, а оставшаяся часть узлового элемента – другим элементом.

Прием 13. Изменить условия, в которых находится узловой элемент, т.о., чтобы он характеризовался двумя различными параметрами, аналогичными узловому параметру, каждый из которых имел бы одно из значений, указанных в ФФП.

Прием 14. Рассмотреть узловой элемент как систему, которая характеризуется одним значением параметра, указанного в ФФП, а одним из ее элементов – другим значением.

Выбор приемов осуществляется в соответствии с правилами:

Если указанные в ФФП показатели характеризуют исходную систему на различных стадиях и фазах жизненного цикла, то лучшие результаты дает применение приемов устранения физического противоречия «во времени» – приемы 6, 7, 8, 11.

Если указанные в ФФП показатели одновременно присущи исходной системе, то лучшие результаты дает применение приемов устранения физического противоречия «в пространстве» - приемы 1, 2, 5, 12.

Если по условиям поисковой задачи замена элементов недопустима, то лучшие результаты дает применение приемов «изменения условий» - приемы 5, 6, 9, 11, 12, 13.

Если требования к элементу сформулированы с т.з. различных внешних объектов или исходя из различных систем отсчета, то – 10, 4.

Если требуется получить наиболее простое решение поисковой задачи, то – 3, 4, 10.

Методы классификации, декомпозиции, стратификации и типологии

Классификация – это разделение явлений, а следовательно и понятий, характеризующих их, на определенные классы, позволяющие увидеть специфику явлений, их разнообразие, свойства, связи и зависимости, общее и специфическое и посредством этого вникнуть в сущность.

Принципы:

  • Принцип единства критерия для выделения групп одного порядка.
  • Принцип соразмерности деления явлений и понятий.
  • Принцип альтернативности и взаимоисключения выделяемых групп. Не должны выделенные явления относится и к одной, и к другой классификационной группе.
  • Принцип многоступенчатости классификации, отражающий возможность делать последовательно ступенчатую классификацию
  • Принцип полноты классификации для каждой ее ступени. Нельзя делить только часть объекта на виды, а другую на подвиды.

Декомпозиция – это особый вид классификации, не допускающий произвольного критерия. Декомпозиция предназначена для установления связанных между собой содержательных элементов некоторой объективной целостности.

Стратификация – это определение слоев (страт) в многослойном явлении, т. е. зависимостей особого вида. В исследовании управления такими стратами могут быть внешняя и внутренняя среда фирмы, технические средства и человеческие ресурсы, и тактика управления и т. д.

Обобщение – это логическая операция, заключающаяся в том, что для некоторой группы явлений находится новое, более широкое по объему понятие, отражающее общность свойств этих явлений на уровне нового знания о них.

Практический успех классификации определяется следующими правилами:

  • Правило соразмерности
  • Правило раздельности членов деления

На протяжении определенной классификационной операции нельзя изменять основание деления, его критерий

Комбинаторная классификация. При проведении классификации нередко встречаются ситуации, когда объекты классификации могут иметь несколько равносущественных признаков, которые могут быть основанием классификации. В этом случае можно совместить две иерархические классификации посредством построения матрицы.

Типология – это группировка объектов на основе их подобия некоторому образцу, который именуется типом, эталоном, или идеальным образом. Здесь каждое явление приближается к одному из эталонов.

Отличие типологии от классификации в том, что типология допускает существование таких явлений, которые не соответствуют ни одному из выделенных типов. Типология превосходит классифкацию своей универсальностью. Она является первоначальнй операцией любых систематизаций.

Cтраница 1


Параметрические методы являются приближенными, и значительная доля успешного их применения заключена в разумном выборе исходного класса функций, в котором отыскивается приближение.  

Параметрические методы базируются на условии, что искомое распределение принадлежит определенному параметрическому классу. Для уменьшения числа отыскиваемых параметров в качестве такого класса может выбираться совокупность известных распределений, включающий начальное. Пусть, например, исходная плотность распределения частиц по объемам является гамма-распределением.  

Параметрические методы, по-видимому, наиболее удобны для обобщения сведений о материалах.  

Параметрические методы и связанные с ними статистические критерии предполагают известным вид функции распределения генеральной совокуп - ности, и проверка гипотез сводится определению неизвестных значений параметров распределений.  

Параметрические методы являются наиболее широко распространенными на практике и вследствие относительной простоты их осуществления будут широко применяться и в будущем. Из параметрических методов ниже будут рассмотрены лишь схемы, которые обеспечивают непрерывное изменение скорости вращения двигателя.  

Параметрические методы основаны на ряде математических предпосылок, касающихся распределения признаков. Так, многие результаты корректны в совокупностях малого объема лишь при нормальном распределении зависимой переменной. Непараметрические методы не используют информацию о распределении признаков и свободны от таких математических ограничений. Следует, однако, учитывать, что указанные преимущества непараметрических методов достигаются за счет уменьшения глубины анализа взаимосвязей. Эти методы обычно позволяют только проверить существенность связи и измерить ее тесноту.  

Параметрические методы могут быть использованы также и для определения поправок к прейскурантам.  

Параметрические методы могут быть использованы также для определения цены однотипной строительной продукции, возводимой в различных районах страны с разными экономико-географическими условиями осуществления строительства.  

Параметрические методы могут быть использованы также для характеристики динамики цен на строительную продукцию. Как уже отмечалось ранее, величина сметной стоимости строительства формируется под влиянием различных ценообразующих факторов, которые с течением времени изменяются, что в свою очередь вызывает изменение уровня сметной стоимости строительства.  

Параметрические методы стабилизации состоят в таком изменении параметров стабилизирующего элемента (нелинейного сопротивления), которое приводит к компенсации дестабилизирующих факторов, вызвавших данное изменение тока или напряжения на входе стабилизатора. При этом в стабилизаторах обычно используются неуправляемые нелинейные сопротивления, которые компенсируют дестабилизирующие факторы уже в силу свойств своих вольтамперных характеристик. К параметрическим относятся такие стабилизаторы, в которых используются газоразрядные стабилитроны, бареттеры, фер-рорезонансные цепи, нелинейные термосопротивления и другие подобные нелинейные сопротивления.  

Параметрические методы прогнозирования разработаны еще слабо. Ряд проблем в этой области связан с графическим представлением данных. Иногда параметрические зависимости удается представить в виде гистограмм или диаграмм. Так, в работе приведена диаграмма прогнозирования максимальной рабочей температуры плавления тугоплавких металлов, из которых изготавливаются камеры сгорания твердотопливных ракет.  

Параметрические методы Ларсона-Миллера и Дорна.  

Параметрические методы планирования себестоимости основаны на использовании выявленных и отраженных в эмпирических формулах зависимостей размера затрат от параметров продукции и условий производства. Из них наиболее распространены (главным образом для калькулирования себестоимости единицы продукции) метод балльных оценок, агрегатный метод и метод корреляционных связей. Важной особенностью этих методов является увязка размера затрат с потребительскими свойствами продукции.  

Лекция 13. Параметрические методы и метод факторного анализа

Основные понятия

Параметр − относительно постоянный показатель, характеризующий систему (элемент системы) или процесс. Параметры указывают, чем данная система (процесс) отлична от других. Поэтому параметры могут быть не только количественными, но и качественными (например, некоторые свойства объекта, его название и т.п.)

Параметры могут характеризовать:

1) внешнюю среду системы;

2) управляющие воздействия;

3) внутренне состояние системы.

Основные параметры системы − это такие ее характеристики, которые изменяются лишь тогда, когда меняется сама система, то есть для данной системы −это константы.

Параметры, характеризующие систему управления, можно разделить на три основные категории, отражающие:

1) экономическую деятельность;

2) организационную деятельность;

3) социально-психологическую атмосферу.

Экономические параметры − измеримые величины, которые характеризуют структуру, состояние, уровень экономического развития государства, отрасли, предприятия. В системе управления государства такими параметрами являются уровень и темп роста национального дохода, соотношение темпов роста промышленности и сельского хозяйства, численность населения и т.д.

В зависимости от особенностей работ, выполняемых в различных службах и подразделениях аппарата управления, используются различные параметры объема, определяющие их масштабы.

Для технических служб основными параметрами являются количество вновь создаваемых и модернизируемых объектов (деталей, узлов по группам сложности), удельный вес стандартных, унифицированных и нормализованных частей, номера новых видов инструментов и приспособлений, подлежащих проектированию и изготовлению, количество новых технологических процессов (по группам сложности).

Для экономической службы основными параметрами являются численность промышленно-производственного персонала и все параметры, по которым проводится анализ работы технической службы.

Работа службы внешних хозяйственных связей (закупки, сбыт) зависит от номенклатуры материально-энергетических ресурсов, количества поставщиков, формы материального обеспечения (складской или транзитной), характера производимой продукции, количества и местоположения потребителей.

Параметры системы могут быть численно оценены по данным, полученным путем социально-экономического эксперимента и статистического наблюдения, чаще всего методов наименьших квадратов, методом максимального правдоподобия и другими статистическими методами.

Параметрический метод

Параметрический метод − это исследование системы управления, основанный на количественном выражении исследуемых свойств системы управления и установлении взаимосвязей между параметрами управляющей и управляемой подсистем. Это дает возможность на базе фактических данных определить форму зависимостей взаимосвязанных параметров, их количественное выражение.

Зависимости могут быть функциональными и корреляционными.

Функциональными называются зависимости, проявляющиеся определенно и точно в каждом отдельном случае (наблюдении). Такая взаимосвязь называется полной.

Корреляционными (неполными) называются зависимости связанных величин, искажаемые влиянием посторонних дополнительных факторов.

Пример функциональной зависимости: выпуск и продажа товаров в условиях дефицита. Коэффициент корреляции равен 1.

Пример корреляционной зависимости может служить соотношение стажа рабочего и производительности труда. Известно, что в среднем производительность труда рабочий тем выше, чем больше их стаж. Однако нередко молодой рабочий трудится лучше пожилого из-за влияния таких дополнительных факторов, как образование, здоровье и др. Чем больше влияние дополнительных факторов, менее тесна связь между стажем и выработкой. Коэффициент корреляции между стажем и производительностью занимает промежуточное положение в интервале от 0 до 1 в зависимости от тесноты взаимосвязей.

Корреляционные зависимости определяются на основе корреляционного метода.

Корреляционный (взаимосвязанный) метод − один из экономико-математических методов исследования, позволяющий определить количественную взаимосвязь между несколькими параметрами исследуемой системы. При этом корреляционная зависимость, в отличие от функциональной, может проявляться только в общем среднем случае, то есть в массе случаев – наблюдений.

Корреляционный метод применяется в теории производственных функций, в разработке разного рода нормативов на производстве, в анализе спроса и потребления и др.

Основные задачи корреляционного метода:

1) определение вида корреляционного уравнения (уравнения регрессии). Простейшим видом такого уравнения, характеризующим взаимосвязь между двумя параметрами, может быть уравнение прямой:

где Y,X − соответственнонезависимая и зависимая переменные;

a,b − постоянные коэффициенты

Вывод о прямолинейном характере зависимости можно проверить путем простого сопоставления имеющихся данных или графически.

2) определение постоянных коэффициентов связи между переменными параметрами, которые наилучшим образом будут отвечать имеющимся фактическим значениям Y и X. В данном случае в качестве критериев оценки адекватности линейной зависимости фактическим данным можно использовать минимум суммы квадратов отклонений реальных статистических значений Y от рассчитанных по уравнению принятой к применению прямой. Коэффициенты прямой при использовании данного критерия могут быть определены известным методом наименьших квадратов.

Примером линейной зависимости можно признать количество заместителей начальника цеха Y функционального отдела от числа работников Х в отделе и на основе статистических данных (для данного примера, не менее 20-25 пар) получить следующую зависимость:

Величина исследуемого параметра довольно часто складывается под влиянием не одного, а нескольких факторов. При линейной связи всех факторов можно использовать линейное уравнение множественной корреляции следующего вида:

где − коэффициенты, рассчитанные эмпирическим путем;

− факторы, от которых зависит потребность в специалистах данного профиля. Номенклатура и количество факторов различны по категориям специалистов

Таким уравнением описывается, например, модель для функциональных специалистов.

Если же воздействие какого-либо фактора на исследуемый объект не может быть признано линейным, то соответствующие факторы могут включаться в уравнение не первой, а второй и более высокой степени.

Регрессивный анализ применяется в частности, при анализе эластичности спроса от цены, при анализе хозяйственной деятельности предприятий (для определения влияния отдельных факторов на результаты).

Факторный анализ

При анализе характеристик систем управления исследователь сталкивается с многомерностью их описания, то есть с необходимостью учитывать в анализе большое число признаков. Многие признаки взаимосвязаны и в значительной мере дублируют друг друга. Нередко признаков в косвенной форме отражают наиболее существенные, но не поддающиеся непосредственному наблюдению и измерению внутренние, скрытые свойства явлений. Поэтому возникает потребность сконцентрировать информацию, выражая большое число исходных косвенных признаков через меньшее число емких внутренних характеристик явления.

Сущность методов факторного анализа состоит в переходе от описания некоторого множества изучаемых объектов, заданного большим набором косвенных непосредственно измеряемых признаков, к описанию меньшим числом максимально информативных глубинных переменных, отражающих наиболее существенные свойства явления. Такого рода переменные, называемые факторами , являются некоторыми функциями исходных признаков.

Основная задача факторного анализа заключается в том, чтобы определить понятие, число и природу наиболее существенных характеристик (факторов).

Переменные при использовании факторного анализа не подразделяются априорно на зависимые и независимые, а рассматриваются как равноправные. Преимуществом метода является возможность одновременного исследования сколь угодно большого числа взаимосвязанных переменных. Отсутствует допущение о «неизменности всех прочих условий», свойственного многим другим методам статистического анализа. Отсутствие ограничений на число переменных и их взаимозависимость позволяет с успехом применять факторный анализ для исследования систем управления, где трудно изолировать влияние отдельных переменных на поведение всей системы.

Параметрический метод

Параметрический метод − это исследование системы управления, основанный на количественном выражении исследуемых свойств системы управления и установлении взаимосвязей между параметрами управляющей и управляемой подсистем. Это дает возможность на базе фактических данных определить форму зависимостей взаимосвязанных параметров, их количественное выражение.

Зависимости могут быть функциональными и корреляционными.

Функциональными называются зависимости, проявляющиеся определенно и точно в каждом отдельном случае (наблюдении). Такая взаимосвязь называется полной.

Корреляционными (неполными) называются зависимости связанных величин, искажаемые влиянием посторонних дополнительных факторов.

Пример функциональной зависимости: выпуск и продажа товаров в условиях дефицита. Коэффициент корреляции равен 1.

Пример корреляционной зависимости может служить соотношение стажа рабочего и производительности труда. Известно, что в среднем производительность труда рабочий тем выше, чем больше их стаж. Однако нередко молодой рабочий трудится лучше пожилого из-за влияния таких дополнительных факторов, как образование, здоровье и др. Чем больше влияние дополнительных факторов, менее тесна связь между стажем и выработкой. Коэффициент корреляции между стажем и производительностью занимает промежуточное положение в интервале от 0 до 1 в зависимости от тесноты взаимосвязей.

Корреляционные зависимости определяются на основе корреляционного метода.

Корреляционный (взаимосвязанный) метод − один из экономико-математических методов исследования, позволяющий определить количественную взаимосвязь между несколькими параметрами исследуемой системы. При этом корреляционная зависимость, в отличие от функциональной, может проявляться только в общем среднем случае, то есть в массе случаев – наблюдений.

Корреляционный метод применяется в теории производственных функций, в разработке разного рода нормативов на производстве, в анализе спроса и потребления и др.

Основные задачи корреляционного метода:

1) определение вида корреляционного уравнения (уравнения регрессии). Простейшим видом такого уравнения, характеризующим взаимосвязь между двумя параметрами, может быть уравнение прямой:

где Y,X − соответственнонезависимая и зависимая переменные;

a,b − постоянные коэффициенты

Вывод о прямолинейном характере зависимости можно проверить путем простого сопоставления имеющихся данных или графически.

2) определение постоянных коэффициентов связи между переменными параметрами, которые наилучшим образом будут отвечать имеющимся фактическим значениям Y и X. В данном случае в качестве критериев оценки адекватности линейной зависимости фактическим данным можно использовать минимум суммы квадратов отклонений реальных статистических значений Y от рассчитанных по уравнению принятой к применению прямой. Коэффициенты прямой при использовании данного критерия могут быть определены известным методом наименьших квадратов.

Примером линейной зависимости можно признать количество заместителей начальника цеха Y функционального отдела от числа работников Х в отделе и на основе статистических данных (для данного примера, не менее 20-25 пар) получить следующую зависимость:

Величина исследуемого параметра довольно часто складывается под влиянием не одного, а нескольких факторов. При линейной связи всех факторов можно использовать линейное уравнение множественной корреляции следующего вида:

где − коэффициенты, рассчитанные эмпирическим путем;

− факторы, от которых зависит потребность в специалистах данного профиля. Номенклатура и количество факторов различны по категориям специалистов

Таким уравнением описывается, например, модель для функциональных специалистов.

Если же воздействие какого-либо фактора на исследуемый объект не может быть признано линейным, то соответствующие факторы могут включаться в уравнение не первой, а второй и более высокой степени.

Регрессивный анализ применяется в частности, при анализе эластичности спроса от цены, при анализе хозяйственной деятельности предприятий (для определения влияния отдельных факторов на результаты).

Факторный анализ

При анализе характеристик систем управления исследователь сталкивается с многомерностью их описания, то есть с необходимостью учитывать в анализе большое число признаков. Многие признаки взаимосвязаны и в значительной мере дублируют друг друга. Нередко признаков в косвенной форме отражают наиболее существенные, но не поддающиеся непосредственному наблюдению и измерению внутренние, скрытые свойства явлений. Поэтому возникает потребность сконцентрировать информацию, выражая большое число исходных косвенных признаков через меньшее число емких внутренних характеристик явления.

Сущность методов факторного анализа состоит в переходе от описания некоторого множества изучаемых объектов, заданного большим набором косвенных непосредственно измеряемых признаков, к описанию меньшим числом максимально информативных глубинных переменных, отражающих наиболее существенные свойства явления. Такого рода переменные, называемые факторами , являются некоторыми функциями исходных признаков.

Основная задача факторного анализа заключается в том, чтобы определить понятие, число и природу наиболее существенных характеристик (факторов).

Переменные при использовании факторного анализа не подразделяются априорно на зависимые и независимые, а рассматриваются как равноправные. Преимуществом метода является возможность одновременного исследования сколь угодно большого числа взаимосвязанных переменных. Отсутствует допущение о «неизменности всех прочих условий», свойственного многим другим методам статистического анализа. Отсутствие ограничений на число переменных и их взаимозависимость позволяет с успехом применять факторный анализ для исследования систем управления, где трудно изолировать влияние отдельных переменных на поведение всей системы.

условия применения параметрического и непараметрических способов оценки достоверности результатов исследования;

определение ошибки репрезентативности средней величины и интенсивного показателя, ее вычисление;

понятие о критерии «t», его выбор в способе определения доверительных границ и оценку в способе достоверности разности результатов исследования.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА

2. Разобрать задачу-эталон.

3. Ответить на контрольные вопросы и тестовые задания в данном учебном пособии.

4. Решить ситуационные задачи.

5. Выполнить задание в курсовой работе, сделать соответствующие выводы.

БЛОК ИНФОРМАЦИИ*

Применяя метод оценки достоверности результатов исследования для изучения общественного здоровья и деятельности учреждений здравоохранения, а также в своей научной деятельности, исследователь должен уметь правильно выбрать способ данной оценки. Среди методов оценки достоверности различают параметрические и непараметрические методы.

Параметрическими называют количественные методы статистической обработки данных, применение которых требует обязательного знания закона распределения изучаемых признаков в совокупности

и вычисления их основных параметров.

В тех случаях, когда имеется малое количество наблюдений и характер распределения неизвестен, когда кроме количественных характеристик, результаты выражаются полуколичественными, а иногда описательными характеристиками (тяжесть заболевания, интенсивность реакции, результаты лечения), параметрические методы становятся непригодными. В этих ситуациях следует использовать непараметрические методы оценки достоверности.

Непараметрическими являются количественные методы статистической обработки данных, применение которых не требует знания за-

* В данном пособии описаны только наиболее часто применяемые способы оценки достоверности результатов исследования. Остальные способы оценки достоверности описываются в специальной литературе.

кона распределения изучаемых признаков в совокупности и вычисления их основных параметров.

В то же время следует отметить, что назначение применения непараметрических методов гораздо шире, чем только оценка достоверности результатов исследования (в том числе они применяются и для характеристики одной выборочной совокупности, и для изучения связи между явлениями). В данном случае акцент сделан на оценке достоверности результатов исследования, как одном из наиболее важных разделов статистического анализа, поэтому непараметрические методы не представлены отдельной главой.

Как параметрические, так и непараметрические методы, используемые для сравнения результатов исследований, т.е. для сравнения выборочных совокупностей, заключаются в применении определенных формул и расчете определенных показателей в соответствии с предписанными для того или иного метода алгоритмами. В конечном результате высчитывается определенная числовая величина, которую сравнивают с табличными пороговыми значениями. Критерием достоверности будет результат сравнения полученной величины и табличного значения при данном числе наблюдений (или степеней свободы) и при заданном уровне безошибочного прогноза. Таким образом, в статистической процедуре оценки основное значение имеет полученный критерий достоверности, поэтому сам способ оценки достоверности в целом иногда называют тем или иным критерием по фамилии автора, предложившего его в качестве основы метода.

4.5.1. ПРИМЕНЕНИЕ ПАРАМЕТРИЧЕСКИХ МЕТОДОВ

1. Способ оценки достоверности с помощью определения ошибок репрезентативности

Средняя ошибка средней арифметической величины определяется по формуле:

Ошибка относительного показателя определяется по формуле:

√ P × q

m = ± , где p - показатель, выраженный в %, %о ,%оо и т.д.

n q = (100 – p) при p, выраженном в %;

или (1000 – p) при p, выраженном в %о ; (10 000 - p) при p, выраженном в %оо и т.д.

При числе наблюдений меньше 30 ошибки репрезентативности определяются, соответственно, по формулам:

m = √

m = √

Результат считается достоверным (Р или М), если он, соответственно, превышает удвоенную или утроенную ошибку репрезентативности: М≥2–3 m; Р≥2–3 m (при n>30).

2. Определение доверительных границ средних и относительных величин

Формулы определения доверительных границ представлены следующим образом:

для средних величин (М): М ген =Мвыб ± tm

для относительных показателей (Р): Р ген =Рвыб ± tm,

где Мген и Рген - соответственно, значения средней величины и относительного показателя генеральной совокупности; Мвыб и Рвыб - значения средней величины и относительного

показателя выборочной совокупности; m - ошибка репрезентативности;

t - критерий достоверности (доверительный коэффициент). Данный способ применяется в тех случаях, когда по результатам

выборочной совокупности необходимо судить о размерах изучаемого явления (или признака) в генеральной совокупности.

Обязательным условием для применения способа является репрезентативность выборочной совокупности. Для переноса результатов, полученных при выборочных исследованиях, на генеральную совокупность необходима степень вероятности безошибочного прогноза (Р), показывающая, в каком проценте случаев результаты выборочных исследований по изучаемому признаку (явлению) будут иметь место в генеральной совокупности.

При определении доверительных границ средней величины или относительного показателя генеральной совокупности исследователь сам задает определенную (необходимую) степень вероятности безошибочного прогноза Р.

Для большинства медико-биологических исследований считается достаточной степень вероятности безошибочного прогноза Р=95,5%, т.е. число случаев генеральной совокупности, в которых могут наблюдаться отклонения от закономерностей, установленных при выборочном исследовании, не будет превышать 5%. При ряде исследований, связанных, например, с применением высокотоксичных веществ, вакцин, оперативного лечения и т.п., в результате чего возможны тяжелые заболевания, осложнения, летальные исходы, применяется сте-

пень вероятности Р=99,7%, т.е. не более чем у 1% случаев генеральной совокупности возможны отклонения от закономерностей, установленных в выборочной совокупности.

Заданной степени вероятности Р безошибочного прогноза соответствует определенное, подставляемое в формулу, значение критерия t, зависящее также и от числа наблюдений.

При n>30 степени вероятности безошибочного прогноза Р=99,7% соответствует значение t= 3, а при Р=95,5 % - значение t=2.

При n< 30 величина t при соответствующей степени вероятности безошибочного прогноза определяется по специальной таблице (Н.А.Плохинского) (приложение 1, с. 150).

ЗАДАЧА-ЭТАЛОН

на определение ошибок репрезентативности (m) и доверительных границ средней величины генеральной совокупности (Мген ) при числе наблюдений больше 30

Условие задачи: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у 36 обследованных водителей сельскохозяйственных машин в кооперативном хозяйстве через 1 ч работы составила 80 ударов в 1 минуту; σ = ±6 уд/мин.

Задание: определить ошибку репрезентативности (mм) и доверительные границы средней величины генеральной совокупности (Мген ).

РЕШЕНИЕ 1. Вычисление средней ошибки средней арифметической (ошибки ре-

презентативности) (m):

m = √ n

= √

= ± 1 уд./мин

2. Вычисление доверительных границ средней величины генеральной

совокупности (Мген ). Для этого необходимо:

а) задать степень вероятности безошибочного прогноза (Р=95,5%); б) определить величину критерия t. При заданной степени вероятности (Р=95,5%) и числе наблюдений больше 30 величина

критерия t равна 2 (t=2).

Тогда Мген =Мвыб ± tm = 80 ± 2 × 1=80 ± 2 уд/мин.

Вывод: установлено с вероятностью безошибочного прогноза Р=95,5%, что средняя частота пульса в генеральной совокупности, т.е. у всех водителей сельскохозяйственных машин в этом хозяйстве, через 1 ч работы в аналогичных условиях будет находиться в пределах от

78 до 82 ударов в минуту, т.е. средняя частота пульса менее 78 и более 82 ударов в минуту возможна не более чем у 5% случаев генеральной совокупности.

ЗАДАЧА-ЭТАЛОН

на определение ошибок репрезентативности (m) и доверительных границ относительного показателя генеральной совокупности (Рген )

Условие задачи: при медицинском осмотре 164 детей 3-летнего возраста, проживающих в одном из районов города Н., в 18% случаев обнаружено нарушение осанки функционального характера.

Задание: определить ошибку репрезентативности (mР ) и доверительные границы относительного показателя генеральной совокупности (Рген ).

1. Вычисление ошибки репрезентативности относительного показателя:

m = √

18 × (100 – 18)

= √

2. Вычисление доверительных границ средней величины генеральной совокупности (Рген ) производится следующим образом:

а) необходимо задать степень вероятности безошибочного прогноза (Р =95%);

б) при заданной степени вероятности и числе наблюдений больше 30 величина критерия t равна 2 (t = 2).

Тогда Рген =Рвыб ± tm = 18% ± 2 × 3 = 18% ± 6%.

Вывод: установлено с вероятностью безошибочного прогноза Р=95%, что частота нарушения осанки функционального характера у детей 3-летнего возраста, проживающих в городе Н., будет находиться в пределах от 12 до 24% случаев на 100 детей.

3. Оценка достоверности разности результатов исследования

Данный способ применяется в тех случаях, когда необходимо определить, случайны или достоверны (существенны) различия между двумя средними величинами или относительными показателями, т.е. обусловлены ли эти различия каким-либо фактором или они случайны.

Обязательным условием для применения данного способа является репрезентативность выборочных совокупностей, а также предположение о наличии причинно-следственной связи разницы между сравниваемыми величинами (показателями) и факторами, влияющими на них.

Формулы определения достоверности разности представлены следующим образом:

для средних величин:

M1 – M2

t = √ m 1 2 + m 2 2 ;

для относительных показателей:

P1 – P2

t = √ m 1 2 + m 2 2 ,

где t - критерий достоверности, m1 и m2 - ошибки репрезентативности, М1 и М2 - средние величины, Р1 и Р2 - относительные показатели.

Если вычисленный критерий t более или равен 2 (t ≥ 2), что соответствует вероятности безошибочного прогноза Р, равной или более 95,5% (Р≥ 95,5%), то разность следует считать достоверной (существенной), т.е. обусловленной влиянием какого-то фактора, что будет иметь место и в генеральной совокупности.

При t<2 вероятность безошибочного прогноза Р<95,5%. Это означает, что разность недостоверна, случайна, т.е. не обусловлена какойто закономерностью (влиянием какого-то фактора).

Поэтому полученный критерий должен всегда оцениваться по отно-

шению к конкретной цели исследования.

ЗАДАЧА-ЭТАЛОН

на оценку достоверности разности средних величин

Условие задачи: при изучении комбинированного воздействия шума и низкочастотной вибрации на организм человека было установлено, что средняя частота пульса у водителей сельскохозяйственных машин через 1 ч после начала работы составила 80 ударов в минуту; m= ± 1 удар в минуту. Средняя частота пульса у этой же группы водителей до начала работы равнялась 75 ударам в минуту; m= ± 1 удар в минуту.

Задание: оценить достоверность различий средних значений пульса у водителей сельскохозяйственных машин до и после 1 ч работы. Число наблюдений (n), т.е. совокупность водителей, составило 36 человек.

M1 – M2

√ m1 2 + m2 2

√ 12 + 12 2

Вывод: значение критерия t=3,5 соответствует вероятности безошибочного прогноза Р>99,7%, следовательно, можно утверждать, что различие в средних значениях пульса у водителей сельскохозяйственных машин до и после 1 ч работы не случайно, а достоверно, существенно, т.е. обусловлено влиянием воздействия шума и низкочастотной вибрации.

ЗАДАЧА-ЭТАЛОН

на оценку достоверности разности относительных показателей

Условие задачи: при медицинском осмотре 40 детей 3-летнего возраста в 18% (m= ±6,0%) случаев обнаружено нарушение осанки функционального характера. Частота аналогичных нарушений осанки при медосмотре детей 4-летнего возраста составила 24% (m= ±6,7%).

Задание: оценить достоверность различий в частоте нарушения осанки у детей 2 возрастных групп.

P1 – P2

t = √ m 1 2 + m2 2

= √

Вывод: значение критерия t<1,0 соответствует вероятности безошибочного прогноза Р<68,3%. Следовательно, частота нарушений осанки не имеет существенных различий у детей 3- и 4-летнего возраста (различия случайны).

Типичные ошибки, допускаемые исследователями при применении способа оценки достоверности разности результатов исследования

При оценке достоверности разности результатов исследования по критерию t часто делается вывод о достоверности (или недостоверности) самих результатов исследования. В действительности же этот способ позволяет судить только о достоверности (существенности)

или случайности различий между результатами исследования.

При полученном значении критерия t<2 часто делается вывод о необходимости увеличения числа наблюдений.Если же выборочные совокупности репрезентативны , то нельзя делать вывод о необходимости увеличения числа наблюдений, так как в данном случае значение критерия t<2 свидетельствует о случайности, недостоверности различия между двумя сравниваемыми результатами исследования.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

1. Что означает оценка достоверности результатов исследования?

2. Назовите способы оценки достоверности результатов исследования.

3. Что показывает ошибка репрезентативности?

4. Как вычисляется ошибка репрезентативности для средних величин и относительных показателей?

5. В чем заключается назначение способа определения доверительных границ?

6. Как определяется величина критерия t при вычислении доверительных границ при числе наблюдений меньше 30 (<30) и при n>30?

7. В чем заключается назначение способа оценки достоверности разности результатов исследования?

8. При каком значении критерия t разность между двумя средними величинами можно считать достоверной (существенной)?

9. Что такое «вероятность безошибочного прогноза»? Каким параметром она представлена в формуле?

10. Какие величины необходимы для определения доверительных границ средней величины какого-либо признака в генеральной совокупности?

ТЕСТОВЫЕ ЗАДАНИЯ

Выберите один или несколько правильных ответов

1. Размер ошибки средней арифметической величины зависит от:

а) типа вариационного ряда; б) числа наблюдений; в) способа расчета средней;

г) разнообразия изучаемого признака.

2. Доверительный интервал - это:

а) интервал, в пределах которого находятся не менее 68% вариант, близких к средней величине данного вариационного ряда;

б) пределы возможных колебаний средней величины (показателя) в генеральной совокупности;

в) разница между максимальной и минимальной вариантами вариационного ряда.

3. Для медико-социальных статистических исследований минимально достаточной является вероятность безошибочного прогноза:

а) 90%; б) 95%; в) 99%.

4. Какой степени вероятности соответствует доверительный интервал M±3m при n > 30:

а) 68,3%; б) 95,5%; в) 99,7%.

5. Оценка достоверности полученного значения критерия Стьюдента (t) для малых выборок производится:

а) по специальной формуле;

б) по принципу: если t > 2, то P > 95%; в) по таблице.

6. При оценке достоверности разности полученных результатов исследования разность является достоверной (существенной), если при

n >30 величина t равна:

а) 1,0; б) 1,5; в) 2,0;

г) 3 и более.

СИТУАЦИОННЫЕ ЗАДАЧИ

В результате проведенного маммографического исследования 2000 женщин старше 35 лет, проживающих в одном из районов города К., у 20% из них были выявлены предраковые состояния молочной железы; m= ±0,9%.

1. С помощью какого способа оценки достоверности можно перенести результаты с выборочной на генеральную совокупность?

2. Достаточно ли представленной информации в условии задачи для соответствующего вывода? Обоснуйте свой ответ.

С целью определения эффективности работы золоуловителей на заводе железобетонных изделий в городе Н. вычислена среднесуточная концентрация пыли в атмосферном воздухе, которая до пуска золоуловителей составила 0,2 мг/м3 (m=±0,06 мг/м3 ) , а после ввода в

строй комплекса золоуловителей - 0,1 мг/м3 ; m=±0,01 мг/м3 .

1. С помощью какого способа оценки достоверности результатов исследования можно оценить эффективность работы золоуловителей?

2. Примените способ и сделайте соответствующий вывод.

Летальность при онкопатологии больных, леченных препаратом

1, составила 10%; m= ±2%.

Врач провел ряд исследований и предлагает лечить больных новым

препаратом (№ 2), который считает более эффективным (летальность в данном случае составила 8%; m= ±2%). Критерий t равен 1,7.

2. Согласны ли вы с врачом? Обоснуйте свой ответ.

Средний вес новорожденных, родившихся у матерей с пороками сердца в роддоме № 2 города А., составил 2,8 кг, σ = ±0,3 кг.

1. С помощью какого способа оценки достоверности результатов исследования можно узнать аналогичный результат в генеральной совокупности?

2. Какая дополнительная информация необходима для применения выбранной вами методики оценки достоверности?

Какой способ оценки достоверности результатов исследования необходимо применить для переноса результатов исследования на генеральную совокупность, если известно, что при изучении организации приема больных в одной из районных поликлиник города Н. среднее время на 1 обращение в регистратуру составило 4 мин, m=±1,5 мин. Выборочно были изучены 1600 обращений пациентов в данную поликлинику.

1. Примените этот способ.

2. Сделайте соответствующий вывод.

СПИСОК ЛИТЕРАТУРЫ

Обязательная

1. Лисицын Ю.П. Общественное здоровье и здравоохранение. Учебник для вузов. - М.: ГЭОТАР-МЕД, 2002. - 520 с.

2. Общественное здоровье и здравоохранение. Учебник для студентов / Под ред. В.А. Миняева, Н.И. Вишнякова. - М.: Мед пресс-информ, 2002. - 528 с.

3. Медик В.А., Юрьев В.К. Курс лекций по общественному здоровью и здравоохранению. Часть I. Общественное здоровье - М.: Медицина, 2003. - 368 с.

4. Кучеренко В.З., Агарков Н.М. и др. Социальная гигиена и организация здравоохранения. (Учебное пособие). - М., 2000 - 432 с.



Декларация по УСН