Выбор оптимального варианта изготовления изделий двп. Вспомогательное пособие "Технология производства мягких (изоляционных) ДВП и ДСП ". Сухой способ прессования

C этой информацией вы сможете организовать крупное и небольшое производство ДСП, но не в домашних условиях, т.к. линия очень громоздкая. Здесь вы узнаете об оборудовании для изготовления ДСП (линия, станок), цене на него, а также про технологию и видео всего процесса.

ДСП – это экологичный, легкий в обработке, практичный материал, высокотехнологичная альтернатива массиву дерева, успешно используемая для обшивки стен и крыш, изготовления стеновых панелей, изготовления настилов под ковровые и линолеумные покрытия, полов, разных перегородок, производства съемной опалубки, изготовления полок, мебели, упаковки, строительства ограждений и разборных конструкций, декорирования и отделки помещений.

Технология производства

Суть технологии изготовления ДСП заключается в использовании прямого горячего прессования в сочетании с термореактивной клеящей смолой и стружечной смеси. В качестве сырья для производства ДСП применяются щепки, опилки, обрывки шпона и пр. мелкие древесные отходы. Стружку перемешивают со связующим материалом, полученная смесь помещается в специальные формы. Под действием высокого давления и температуры смесь склеивается и образует единое целое. Готовую плиту извлекают из формы и охлаждают, потом она обрезается и подвергается процессу шлифования.

Весь этот процесс и сама линия показаны в видео:

Еще полезное:

Как видите, организовать такой бизнес в домашних условиях у вас навряд ли получится, т.к. линия очень громоздкая.

Основное оборудование

Итак, вам понадобится следующее оборудование для производства ДСП:

  • Смесители, в которых производится в строго регламентированных долях смешивание клея с древесной стружкой; клей представляет из себя нагретую смолу с разными добавками и отвердителями;
  • Формующие машины. В них происходит формирование ковра – укладка в специальную форму осмоленной стружки;
  • Термические прессы. Применяются для прессования плит и склеивания их;
  • Веерные охладители. Применяются для охлаждения горячих заготовок;
  • Вертикальные и горизонтальные обрезатели боковин. Используются для обрезания кромок;
  • Шлифовальный станок. Применяется для шлифования торцов и поверхности готового изделия.

Вышеописанная линия для производства ДСП подходит для цикла, предполагающего наличие готового исходного сырья.

Если в производстве ДСП планируется использовать собственное сырье, комплект нужно дополнить таким вспомогательным оборудованием, как раскроечные станки, рубительные машины, строгальные станки и мельницы.

Кроме этого, к дополнительному оборудованию, которое повышает технологичность производства ДСП, принадлежат транспортеры, столы с подъемными механизмами, вибросита, системы вентиляции для удаления шлифовальной пыли, штабелеры, погрузчики, сушильные камеры.

Цена целиком укомплектованной мини-линии, осуществляющей производство шлифованной ДСП и имеющей производительность 100 листов в день, – ок. 190 000 евро. Линия, имеющая большую производительность (1000 листов в день), стоит 550-650 тыс. евро (если ориентироваться по ценам ЧП «SMS», Украина, при условии самовывоза). Более дешево обойдется покупка китайского оборудования от Харбинского завода Luniwei — примерно 280 000 евро, производительность при этом составляет 10 000 куб.м. за год.

При приобретении линии, имеющей производительность 10 000 куб.м., нужны такие капитальные затраты:

  • Цена линии для производства ДСП (станка) – 8-10 млн. руб.;
  • Цена вспомогательного оборудования – 1 500 000 руб.;
  • Доставка линии и её монтаж – 500-600 тыс. руб.;
  • Ремонт и подготовка помещения для производства ДСП и размещения станка (площадью 450 кв. м) – 450 000 руб.;
  • Создание товарного запаса на месяц – 4 200 000 руб.;
  • Пр. расходы – 450 000 руб.

Итого, чтоб организовать процесс производства ДСП, нужны инвестиции в размере примерно 17-18 млн. руб.

При усредненной отпускной цене 1-го кубометра ДСП 7 800 рублей месячная выручка составляет 6 500 000 рублей. Среднестатистическая рентабельность крупного и небольшого производства колеблется от 18 до 30%, время окупаемости вложенных инвестиций составляет от одного года до полутора.

Изготавливается ДВП сухим непрерывным способом на линии фирмы «Bison»

1) Характеристика изготовляемой продукции, сырья и основных материалов

Плиты древесноволокнистые сухого непрерывного способа производства изготовляют из древесины лиственных и хвойных пород с добавлением связующих.

Размеры и основные физико - механические показатели плит должны соответствовать требованиям ТУ BY 600012401.003-2005 «Плиты древесноволокнистые».

Испытания плит производят по ТУ BY 600012401.003-2005.

Сырье и материалы должны соответствовать требованиям соответствующих стандартов (табл. 1.1).

Таблица1.13 – ГОСТы или ТУ на сырье и материалы

Наименование сырья и материалов

ГОСТ или ТУ

Щепа технологическая

ГОСТ 15815-83

Щепа технологическая из тонкомерных деревьев или сучьев

Смолы карбамидоформальдегидные марок:

ТУ 135747575-14-14-89

или КФ-МТ-15

ТУ 6-06-12-88

Аммоний хлористый технический

ГОСТ 2240-73

Сульфат аммония

ГОСТ 9097-82

Дрова для гидролизного производства и изготовления ДВП

ОСТ 13-200-85

Сырье древесное технологическое

ТУ РБ 100195503.014- 2003

Для производства ДВП сухим непрерывным способом рекомендуется следующий породный состав древесного сырья:

50% - осина, тополь, ольха

20-30% - хвойная древесина

20-30% - береза

Соотношение между видами древесного сырья рекомендуется следующее: щепа технологическая – не менее 70%;

щепа технологическая из тонкомерных деревьев или сучьев – не более 30%;

допускается использование опилок от лесопиления, деревообработки – не более 10.

2)Технологический процесс

Технологический процесс производства ДВП сухим непрерывным способом включает следующие операции:

Приемка и хранение сырья и материалов

Приготовление технологической щепы

Размол технологической щепы на волокно

Приготовление введение связующего и отвердителя.

Сушка древесноволокнистой массы

Формирование древесноволокнистого ковра

Прессование древесноволокнистых плит

Раскрой плит на форматы, укладка и упаковка плит

2.1) Приемка сырья и материалов.

Сырьем для производства древесноволокнистых плит является покупная технологическая щепа, щепа технологическая из тонкомерных деревьев и сучьев из леспромхоза, щепа из кусковых отходов деревообработки и лесопиления, дровяная древесина, технологическая щепа, изготовленная из дровяной древесины.

Сырье поступает автомобильным транспортом и разгружается на склад открытого хранения.

От каждой партии поступающей щепы отбирают пробы по ГОСТ 15815-83 на анализ для определения содержания хвойных и лиственных пород, коры, гнили, минеральных примесей и фракционного состава.

Учет количества щепы и методы его измерения должны соответствовать ОСТ 13-74- 79 или ГОСТ 15815-83.

Перевод массы измельченного сырья в объем при известной влажности производят по формуле:

где V - объем щепы, м.куб.; m - масса щепы, т; - плотность щепы при фактической влажности, кг/м.куб.

Смолу карбамидоформальдегидную доставляют в ж/д цистернах в отделение приема и разгрузки ж/д цистерн. Учет смолы ведут по уровню заполнения емкостей с отсчетом по калиброванным шкалам с переводом объема в массу путем умножения измеренного объема на плотность смолы. От каждой партии поступающей смолы отбирают пробу для анализа по ТУ 135747575-14-14-89 или ТУ 6-06-12-88.

Сульфат аммония (аммоний хлористый) доставляют в цех транспортом в мешках Учет твердых, упакованных химикатов производят по массе каждого мешка, указанной на этикетке или путем взвешивания.

Дровяная древесина, поступающая на площадку автомобильным транспортом выгружается башенным краном КБ572 и штабелируется по породному составу. Диаметр сырья устанавливается до 800мм, длиной от 1 до 6м с градацией через 1м. В сырье не допускаются дефекты:

Наружная трухлявая гниль;

Обугленность;

Ядровая гниль;

Остальные пороки и дефекты допускаются. Сырье хвойных и лиственных пород поступает с корой и в окоренном виде. Обмер и учет дровяной древесины длиной до Зм производится по ГОСТ 3243-88, длиной более Зм - по ГОСТ 2292-74. Сырье при длине менее 2м - в пакетах.

2.2) Приготовление и сортировка технологической щепы

Дровяная древесина, поступающая на площадку автомобильным транспортом, выгружается башенным краном КБ572 и штабелируется по породному составу. Высота штабеля должна быть не более 1 А его длины, но не должна превышать полуторную длину бревен, уложенных в данный штабель. Высота штабеля бревен при штабелевке вручную должна быть не более 1,8м.

Из штабеля башенным краном КБ572 дровяная древесина подается на эстакаду. С эстакады сырье поштучно накатывается на бревнотаску. Цепным транспортером бревнотаски сырье подается в дисковую рубите ль ную машину МРР8-50ГН, где перерабатывается в технологическую щепу.

Техническая характеристика дисковой рубительной машины МРР8-50ГН:

Объемная производительность, м.куб./час 50

2. Объемная производительность при рубке немороженной древесины диаметром 50-90

600-800мм, м.куб./час

3. Размеры перерабатываемой древесины, мм:

Диаметр 200-800

Длина не менее 1000

Допускается переработка древесины диаметром 60-200мм с группировкой ее в пачки. Размер пачки не должен превышать размеров загрузочного окна патрона

4. Геометрические размеры щепы по ГОСТ 15815-83

5. Диаметр патрона, мм 850 2,7

6. Ножевой диск:

Диаметр, мм 2900

Количество резцов, шт 25

Угол наклона диска к горизонту, град. 37

Частота вращения, об/мин 152

7. Привод диска – электродвигатель:

Тип AO3-400M-10V2

Мощность, кВт 160

Частота вращения, об/мин 590

8. Привод подачи

Мощность, кВт 2,2

Частота вращения, об/мин 750

Количество, шт 2

Рисунок 6 – Технологическая схема хранения и сортировки щепы

Рисунок 7 – Схема очистки щепы на гидромойке

9. Габаритные размеры, мм:

Длина, мм 6805

Ширина, мм 5090

Высота, мм 3265

Площадка хранения щепы (рис 6) состоит из двух участков: площадки хранения лиственной щепы и площадки хранения хвойной щепы. Щепа технологическая, поступающая автомобильным транспортом подается на бетонированную площадку хранения хвойной (12), лиственной (14) щепы. Формирование куч на складе щепы осуществляется при помощи бульдозера. Бульдозер с бетонированной площадки подает щепу на станцию дозирования хвойной щепы (4) и на станцию дозирования лиственной щепы (13). Из станции дозирования хвойной щепы (4) технологическая щепа скребковыми транспортерами (7) подается на сортировку СЩ-120 (11). Из станции дозирования лиственной щепы (13) скребковыми транспортерами щепа подается на сортировку типа «REWiBRALL» (10) производительностью 700 кг/час абс.сухой щепы. Сортировки имеют два сита и поддон и разделяет щепу на три фракции. Верхнее сито имеет отверстия размерами 50x50 мм и 40x40 мм, нижнее 8x8мм. Крупная фракция с верхнего сита и мелкая фракция с нижнего сита ленточным транспортером подают в бункер отсева от щепы.

Оптимальные размеры щепы 15-35мм, толщиной 4-6мм. Кондиционную щепу транспортером подают на гидромойку. Схема очистки щепы на гидромойке представлена на рис.7.

Через транспортировочное устройство щепа поступает в сепаратор тяжелых частиц (1) промывочной установки, где находится лопастное колесо (3), перемешивающее щепу под водой. Благодаря потоку воды, подхватывающему щепу снизу вверх, исключается попадание щепы в находящуюся внизу промежуточную емкость (4) и удаления ее через шлюзовой затвор (7). Преодолеть поток воды и опуститься в промежуточную емкость могут только минеральные примеси с большим удельным весом. Этим же потоком воды щепа вносится в нижнюю часть обезвоживающего шнека (2), снабженного потоком с отверстиями для стекания воды из щепы по пути ее транспортировки в воронку (6). Очистка отверстий лотка производится водой, которая подается в верхнюю часть лотка. Вода вместе с частицами попадает в промежуточную емкость (5) и затем возвращается в систему циркуляции.

Щепа, транспортируемая обезвоживающим шнеком (2), попадает в бункер- воронку для щепы (6), откуда направляется в пропарочную камеру. Для обогрева бункер -воронки в зимний период, установлен калорифер (14), в который подается пар, и вентилятор (15), нагнетающий горячий воздух в бункер.

Для контроля за наполнением воронки установлено измерительное устройство с гамма - излучателем, которое функционирует следующим образом.

Защитная оболочка и детектор излучения монтируется друг напротив друга. Испускаемые радиоактивным веществом гамма -лучи пронизывают стенки и пустую емкость. Счетчик Гейгера преобразует излучение в импульсы тока, которые передаются по двух -проводному кабелю и суммируются в контрольном устройстве (Gammapilot). Затем результирующий ток служит для включения выходного реле. Если уровень наполнения емкости щепой превышает высоту прохождения гамма-лучей, то гамма- излучение ослабляется, выходное реле переключается и подача щепы прекращается.

Тяжелые частицы (минеральные примеси), попадающие в сепаратор тяжелых частиц (1), и далее через промежуточную емкость (4) направляют в открытый со стороны емкости шлюзовой затвор (7), в котором осаждаются. Через некоторое время шлюз со стороны емкости закрывается и открывается сливное отверстие, через которое тяжелые частицы и вода по трубопроводам подаются в многокамерный успокоительный бассейн (8) накопительной емкости (11), где находится очищающий скребковый транспортер (10).

Взвешенные частицы, выходящие вместе со сточной водой из обезвоживающего шнека (2), предназначенного для удаления воды, попадают в промежуточную емкость (5) и накапливаются в шлюзовом затворе (7), работающем аналогично указанному выше шлюзовому затвору. Шлюзовой затвор (7) подает взвешенные частицы также в многокамерный успокоительный бассейн (8).

После опорожнения таким образом шлюзовых затворов (циклы опорожнения можно регулировать независимо друг от друга), сливные отверстия закрываются и шлюзовые затворы автоматически заполняются водой через автоматически действующие запорные клапаны. После этого шлюзовые затворы снова открываются со стороны емкости.

Из многокамерного успокоительного бассейна (8), тяжелые частицы (минеральные примеси), содержащиеся в сточной воде, подают скребковым транспортером в шнековый транспортер. Посредством насоса (12) чистую воду из запасного бассейна (9) накопительной емкости (11) направляют на промывку перфорированного лотка обезвоживающего шнека (2). Часть этой воды возвращается обратно в накопительную емкость (11).

Насос (13) подает воду из промежуточной емкости (5) в сепаратор тяжелых частиц (1), из которого вода снова вместе со щепой направляется в обезвоживающий шнек (2). Потери воды в этом контуре, обусловленные работой шлюзов, восполняются водой от поперечной промывки.

2.3) Размол технологической щепы на волокна

В процессе размола технологической щепы должно достигаться максимально полное разделение древесины на отдельные волокна, обеспечивающее увеличение поверхности частиц и повышение их пластичности. Повышение пластичности облегчает сближение частиц при формировании древесноволокнистого ковра и прессование плит. Для обеспечения пластичности волокон щепу перед размолом подвергают обработке насыщенным паром давлением 0,7-1,2 Мпа.

В процессе пропарки и размола происходит частичный гидролиз древесины. Водорастворимые продукты сохраняются в волокнах при дальнейшей технологической обработке, участвуя в образовании физико-химических связей между волокнами. В процессе гидролиза происходит образование функциональных групп на развернутой поверхности волокон. Для различных пород древесины требуются различные условия обработки. Так, ель, пихта и сосна, у которых в экстрактивных веществах содержатся способные к полимеризации непредельные кислоты, требуют минимальной термообработки. Другие породы, например береза и осина, требуют более жестких условий термообработки. Давление гидроприжима размольных дисков рафинера для щепы лиственных пород рекомендуется, наоборот меньшее, чем для хвойных пород.

Технологическая схема получения волокна на рафинере «PR-42» ФИРМЫ «Pallmann» представлена на рис.8. Из установки для промывки щепа ссыпается в бункер-воронку рафинера (1). В эту же бункер- воронку пневмотранспортом подаются обрезки от ФОС. Из бункера - воронки щепу и опилки набивным (загрузочным) шнеком (2) подают в пропарочный котел (4). Из пропарочного котла щепу разгрузочным шнеком (5) подают в размольную камеру (6) между неподвижным и вращающимся дисками. Полученное волокно давлением пара выбрасывается через разгрузочный клапан в массопровод (8) и далее в трубу-сушилку.

Переувлажненное волокно, образующееся при пуске рафинера, подают через циклон (9) в бункер пускового волокна.

Техническая характеристика рафинера «PR-42»

Производительность по абсолютно сухому волокну, кг/час 5500

Объем пропарочной камеры, мЗ 2,5

Продолжительность пропаривания щепы, мин 3-6

Давление пара, Мпа 0,7-1,2

Рабочая температура, С 190

Расход пара, кг/час 5000

Диаметр размалывающих дисков, мм 1066,8

Частота вращения диска, мм- 1 1485

Частота вращения двигателя, мин-1 1485

Мощность двигателя, кВТ 1600

Вид охлаждающего агента для двигателя вода

Частота вращения набивного (загрузочного) шнека зависит от производительности рафинера и насыпной массы щепы (рис.9). Так, при производительности рафинера 5,5 т/ч и насыпной массе щепы 150 кг/мЗ частота вращения набивного шнека будет 62 мин-1.

Продолжительность пропаривания щепы определяют с помощью диаграмм (рис.10-12). Устанавливают производительность размольной установки (число оборотов разгрузочного шнека) по рис.10, а затем продолжительность пропаривания в зависимости от насыпной массы щепы по рис.11-12. Так, например, при частоте вращения шнека 32 мин-1 производительность рафинера будет 5,0 т/ч абсолютно сухого волокна (при насыпной массе щепы 150 кг/мЗ). По рис.11 устанавливают, что для такой производительности продолжительность пропаривания волокна может быть от 2 до 5 мин при высоте заполнения пропарочного котла щепой от 1,6 до 4,0 м.

Зазор между дисками, давление гидроприжима дисков и степень открытия разгрузочного клапана существенно влияют на качество получаемого волокна. С увеличением производительности рафинера зазор необходимо увеличивать. Необходимое давление гидроприжима следует устанавливать в зависимости от породного состава щепы.

Зазор между дисками устанавливается с помощью установочного микровинта. Один полный оборот микровинта вызывает осевое смещение диска на 0,75мм. При вращении микровинта «вправо» диски сближаются и наоборот. Измерение зазора осуществляют измерительным зондом с выводом результата измерения на цифровой прибор с точностью до 0,01мм. За нулевое положение измерительного зонда принимают точку соприкосновения дисков. Для определения точки соприкосновения дисков микровинт вращают «вправо» до появления свистящего звука, который возникает при соприкосновении вращающегося диска с неподвижным Затем микровинт вращают « влево» до установки необходимого зазора, величину которого показывает цифровой индикатор.

Диски могут находиться в соприкосновении только в течение 1-2 сек, иначе возможен перегрев и разрушение сегментов.

Пуск рафинера следует производить при зазоре между дисками не менее 5мм Тем самым предотвращается запуск со сведенными дисками. Если размалывающие диски находятся на расстоянии менее 5 мм друг от друга, то путем «левого» вращения микровинта они разводятся до сих пор, пока на пульте управления рафинера не загорится лампа «ротор на позиции», что говорит об удалении размольных дисков на 5мм друг от друга.

Перед подачей щепы размольную камеру необходимо прогреть до температуры не менее 100°С.

После сброса первых порций волокна производится регулирование зазора между дисками с учетом работы разгрузочного клапана и давления гидроприжима дисков для получения волокна необходимого качества. Через некоторое время после начала работы рафинера нагрузка на двигатель начинает падать, что свидетельствует об увеличении зазора. В этом случае диски сближают до первоначального показания нагрузки на двигатель.

При неизменном зазоре и все увеличивающейся степени износа сегментов дисков происходит повышение потребляемой двигателем электроэнергии. Для поддержания заданного зазора в этом случае необходимо увеличивать давление гидроприжима дисков.

Разгрузочный клапан также постепенно изнашивается, поэтому необходимо во время эксплуатации периодически регулировать степень его открытия.

Рисунки 8-11

Рисунки 12 - 13

Схемы приготовления и дозирования рабочего раствора смолы и отвердителя приведены на рис.12-13.

Карбамидоформальдегидную смолу со склада насосом (1) перекачивают в расходную емкость объемом 9000 кг, откуда смола перекатывается в мерный стакан (4) объемом 200 литров, а от туда в емкость для приготовления рабочего раствора смолы(8) емкостью 300 л. После разбавления и интенсивного перемешивания раствор смолы отбирают на анализ.

Отвердитель готовят и вводят в массопровод.

Сульфат аммония (хлористый аммоний) в мешках подают на площадку приготовления отвердителя и растворяют в воде при перемешивании в емкости (1) объемом 480л. Температура воды должна быть 35-40 С. Воду дозируют по счетчику (2). Приготовленный раствор циркуляционным насосом (8) через фильтры (7) наполняют поочередно дозировочные емкости (6). Дозирующий насос (10) подает раствор отвердителя в масопровод. Комки древесного волокна со смолой отделяют в сепараторе тяжелого материала и выводят из потока. Стандартное древесное волокно, без комков, вентилятором через циклоны подают на ленточный конвейер формирующей машины.

Рисунок 14 - Технологическая схема сушки древесноволокнистой массы

2.4) Сушка древесноволокнистой массы

Сушка древесноволокнистой массы после рафинера осуществляется в трубе-сушилке RT60 фирмы «Шойх» (Scheuch), при прохождении через которую в потоке горячих газов древесноволокнистая масса высушивается до влажности 6-12%. Агентом сушки являются смешанные с воздухом горячие газы, образующиеся при сжигании в горелке топки природного газа. Регулирование процесса сушки осуществляется автоматически, путем поддержания на заданном уровне температуры выходящей из сушилки парогазовой смеси за счет изменения объема подачи природного газа на горелку топки. Для предотвращения возгорания волокна температура агента сушки на входе в сушилку должна быть не более 170 С.

Технологическая схема сушки древесноволокнистой массы приведена на рис.14.

В горелку CK-100-G (1) топки (2) подают для сжигания природный газ. Горячие газы, образующиеся при сжигании, смешивают с воздухом и подают дымососом (3) в трубу-сушилку (5). Одновременно в топку подают для сжигания воздух (6), содержащий формальдегид, собранный от зонта пресса. Древесноволокнистую массу от рафинера по массопроводу (7) вводят в трубу сушилку. Рабочий раствор связующего и отвердителя поступает в массопровод, где происходит интенсивное перемешивание с волокном вследствие турбулентности потока, возникающего при транспортировке волокна. В потоке горячих газов в трубе- сушилке влажное волокно высушивают до влажности 6- 12% в течение 3-4 с и подают в четыре циклона (8), в которых отделяют сухое волокно от агента сушки, а затем через шлюзовой затвор (9) выгружают на ленточный конвейер (10).

При возгорании волокна в сушилке автоматически срабатывает система обнаружения и локализации загораний фирмы «Grecon», ленточный конвейер (10) включается в обратном направлении и потушенное волокно выводится из потока.

Сухое волокно с ленточного конвейера поступает в сепаратор тяжелого волокнистого материала (11) и далее в циклон формирующей машины.

Основные технологические параметры процесса сушки древесноволокнистой массы, приведены в табл.1.16

Таблица 1.16 – Основные технологические параметры

Наименование параметра

Значение параметра

Температура агента сушки на входе в трубу-сушилку

Температура агента сушки на выходе из трубы-сушилки

Начальная влажность волокна

Конечная влажность волокна

Скорость агента сушки

Масса волокна, проходящего через

сушилку за 1 час

Контроль и регулирование режима сушки осуществляется системой каскадного регулирования и контроля температуры на входе и выходе из сушилки, в топке.

Режим сушки задается установкой определенной температуры агента сушки на выходе из трубы-сушилки посредством управляющего регулятора, связанного с термосопротивлениями, находящимися на выходе из трубы- сушилки. При превышении заданного значения температуры на 5-10°С происходит автоматическое отключение горелки.

Максимальная температура агента сушки на входе в трубу-сушилку задается с помощью электронного регулятора, соединенного с термосопротивлениями, установленными на входе в трубу-сушилку. При превышении заданного значения температуры автоматически отключается подача волокна в сушилку и топлива на горелку.

При отказе одного из агрегатов, установленных после сушилки, подача волокна в сушилку и топлива на горелку автоматически прекращаются.

Чистка сушилки от осевшего волокна должна производиться не реже одного раза в неделю. Чистку сушилки необходимо производить только при снижении температуры в сушилке до 30 С и при отключенных электродвигателях. Предохранители всех приводных электродвигателей сушилки должны быть извлечены.

Забивание волокнистой массой трубы-сушилки или циклонов приводит обычно к превышению заданных значений температуры на входе и выходе, при этом сушилка автоматически отключается. Если это не происходит, необходимо немедленно отключить горелку вручную, прекратить подачу волокна в сушилку и произвести ее чистку.

После вынужденной или специальной остановки подачу волокна в сушилку следует начинать постепенно, без резкого увеличения производительности.

В случае возгорания волокна автоматически срабатывает система пожаротушения с подачей воды в сушилку. После ликвидации загорания сушилку необходимо тщательно вычистить и удалить воду из вентилятора.

2.5) Формирование древесноволокнистого ковра.

Назначение технологической операции формирования - получение непрерывного древесноволокнистого ковра определенных размеров по толщине и ширине. Технологический процесс формирования древесноволокнистого ковра сблокирован с другими участками. Формирование древесноволокнистого ковра осуществляется в одной формирующей камере (рис.15).

Волокно из приемных циклонов через шлюзовые затворы подают на ленточный конвейер (1), который транспортирует его в бункер- дозатор (2) формирующей камеры. Конвейер при этом совершает возвратно- поступательные движения, распределяя волокно по ширине бункера -дозатора (2). С конвейера (1) волокнистый материал попадает на дозировочный транспортер (3) бункера-дозатора. Если уровень волокнистого материала достигнет определенной высоты, то лишнее волокно отбрасывается разравнивающими гребенками (4) назад. Затем волокно подается дозировочным транспортером (3), скорость которого находится в прямой зависимости от объема ссыпанного волокна, к разгрузочным валкам (5) и далее к разрыхляющим валкам (6), которые вращаются в противоположных направлениях. После пропускания через разрыхляющие валки (6) волокнистый материал подхватывается воздушным потоком, создаваемым вакуумными коробами (7), и осаждается на движущейся ленточной сетке (11). Вследствие воздухопроницаемости сетки и сильного всасывающего воздействия под ней, волокнистый слой-ковер уплотняется и при этом одновременно сволачивается. Толщина волокнистого ковра зависит от скорости ленточной сетки. Сформированный волокнистый ковер срезается на заданную высоту скальпирующим устройством (8). Скальпирующее устройство состоит из снабженного зубьями валика, удаляющего избыточный материал, который отводится с помощью пневмосистемы и затем снова возвращается для дальнейшего использования. Толщину слоя волокна устанавливают за датчиком радиоизотопного плотномера (9) и автоматически поддерживают на заданном уровне с помощью изменения скорости сетки или перемещения скальпирующего устройства по высоте. Сформированный ковер подпрессовывают ленточно-валковым подлрессовщиком (10), в результате чего высота ковра уменьшается в 2-2,5 раза и повышается его транспортабельность.

Рисунок 15 – Схема формирования древесноволокнистого ковра

Рисунок 16 – Технологическая схема прессования древесноволокнистых плит

2.6) Прессование древесноволокнистых плит

Прессование древесноволокнистых плит осуществляют в прессе непрерывного действия каландрового типа «Auma-ЗОР» фирмы «Berstorff» (рис.16.)

Технологическая характеристика пресса «Auma-ЗОР»:

Диаметр каландра, мм 3000

Диаметр прижимных нагревательных валков, мм 1400

Диаметр натяжного и ведущего валков, мм 1400

Рабочая ширина каландра, мм 2500

Длина стальной ленты, мм 27900

Ширина стальной ленты, мм 2650

Толщина стальной ленты, 2,1 Количество очищающих валков, пгг

Обогрев каландра и валков термомасло

Температура каландра и валков, °С до 200 Максимальное рабочее давление гидроприжима, МПа:

Валка №2 20

Валка №3 15

Валка №4 28

Максимальное рабочее давление в гидросистеме

Натяжения стальной ленты, МПа 14

Скорость прессования, м/мин 3-30

После обрезки кромок древесноволокнистый ковер через металлоискатель ленточным транспортером(18) подается на входную зону каландрового пресса, захватывается непрерывной стальной лентой (7) и прижимается к нагретому до 160-190°С каландру (1). Прессование производится в основном прижимными валками (2,3,4), которые давят с заданным давлением на стальную ленту и древесноволокнистый ковер. В зоне после валка (4) ковер удерживается стальной лентой в подпрессовом состоянии, окончательно прогревается и отверждается связующее валок (5) создает натяжение стальной ленты, привод ленты осуществляется от валка (6). Полученная плита транспортируется по направляющим валикам, проходит через толщиномер (19) и подается на форматно-обрезной станок.

На линии предусмотрена возможность нанесения однослойного покрытия из текстурной паропроводящей бумаги на сформированный древесноволокнистый ковер с последующим его прессованием. Для этих целей используется установка для каширования (22), расположенная непосредственно перед каландром (1) и представляющая собой станину, на которой крепятся рабочий и запасной рулоны с бумагой (диаметром не более 600мм) и три направляющих валка (диаметром 148мм). После установки рулона необходимо протянуть полосу бумаги через три направляющих валка до входа в каландр. Непосредственно после начала операции каширования необходимо с помощью регулятора давления, расположенного рядом с тормозом, задать необходимую величину натяжения полосы бумаги, максимальная скорость установки по нанесению покрытия составляет 50 м/мин.

Для каширования используется паропроводящая бумага, масса 1 кв.м. которой составляет 60-150г., а рабочая ширина – 2550 мм.

2.7) Раскрой древесноволокнистых плит на форматы, упаковка и укладка плит После горячего прессования в каландровом прессе и автоматического измерения толщины, непрерывную ленту древесноволокнистой плиты двумя валками подают на форматно-обрезной станок типа МЕ-02 (Shwabedissen).

Станок оснащен 2-мя фрезами и четырьмя круглыми пилами для продольного распила (две фрезы и две пилы для обрезки продольных кромок и две пилы для раскроя плиты по длине на две либо три части) и пятью пилами поперечного раскроя. Плиты для обрезки кромок снабжены дробилками. После дробления кромок пневмосистемой отправляются в бункер для отходов для последующего сжигания в топке котла. Пилы поперечного раскроя расположены последовательно и вплотную друг к другу и при раскрое совершают колебательные движения по дуге, при этом плита на 2-Зс зажимается зажимными валками и останавливается, образуя дугу перед станком. После распила плиты, пилы поднимаются, зажимные валки отводятся, дуга древесноволокнистой плиты распрямляется и плита продвигается на следующий шаг до конечного выключателя (на заданный размер по длине).

Готовые древесноволокнистые плиты сортируют и укладывают в пачки по 50-200 шт. в зависимости от толщины плит. Стандартные плиты, предназначенные для экспортных поставок, упаковываются по ОСТ 13-34-81 «Плиты древесноволокнистые, поставляемые на экспорт. Упаковка, маркировка, транспортирование, хранение».

Упаковка стандартной плиты осуществляется следующим образом (рис 17): сформированные пакеты плиты поступают на приводные рольганги(3). Затем пакет плиты поступает на приводной рольганг (5) для упаковки. Второй пакет плиты, через приводной рольганг (7) поступает для упаковки на приводной рольганг (8). Производится упаковка. Упакованные пакеты транспортируются на рольганги (6,9) и снимаются автопогрузчиком. Упаковка нестандартной (большеформатной) плиты происходит следующим образом:

Сформированный пакет плиты поступает на приводные рольганги (3). Затем пакет поступает на приводные рольганги (4,7) для осуществления упаковки. Плита упаковывается и транспортируется на рольганги (6,9), после чего снимается погрузчиком. Для упаковки пакетов ДВП используют обкладки из ДВП или стрейчпленку. Сформированный пакет обвязывают нагартованной упаковочной лентой по ГОСТ 3560 «Лента стальная упаковочная» или лентой упаковочной полиэстеровой.

Натяжение и закрепление концов упаковочной ленты должно исключать возможность расслабления упаковки во время погрузочно- разгрузочных работ и транспортирования.

На стыках верхних, нижних и боковых обкладочных плит под упаковочную ленту укладывают уголки, предохраняющие плиты от смятия.

Размеры, массу пакетов, количество листов в пакете, количество поясов ленты, размеры деталей поддонов, их количество и материал, а также маркировку производят, определяют и выполняют по ОСТ 13-34-81.

Упакованные плиты погрузчиком перевозят в сухой закрытый склад, где пакеты плит укладываются в штабеля одного типоразмера. Штабель должен находиться не менее 1,5м от дверей и не менее 0,5 м от стен и отопительных приборов. Между штабелями делают проходы и проезды, обеспечивающие к ним свободный доступ. Ширина проезда должна обеспечивать транспортирование пакетов плит максимальной длины.

Древесноволокнистые плиты, не предназначенные на экспорт, хранят, упаковывают, маркируют и транспортируют согласно ТУ BY 600012401.003- 2005.

Рисунок 17 – Схема организации торцовки и упаковки ДВП

Рассмотрено на заседании методического

объединения ПЛ - 10.

Мастер п/о: Муллашиков Д.

Сайрам.

Введение

Повышенный интерес к древесным композиционным материалам (композитам) обусловлен рядом причин: низкой стоимостью древесного сырья, малыми затратами труда и энергии при производстве древесных композиционных материалов и изделий из них, ценными, а в отдельных случаях и уникальными, свойствами этих композитов, непрерывной возобновляемостью древесных ресурсов и др.

По данным Отдела леса и лесных продуктов продовольственной сельскохозяйственной комиссии Организации Объединенных Наций (ФЛО ООП), производство в мире только трех древесных композиционных материалов в объемных единицах превосходит производство сталей, пластмасс и алюминия. Композиционные материалы состоят из двух или более компонентов (фаз), между которыми имеется граница раздела.

Понятие композиционного материала в широком смысле, безусловно, включает и природные материалы, например древесину. Таким образом, древесными композиционными материалами должны быть названы материалы, состоящие из древесины или ее часта и одного или нескольких других компонентов (металла, полимера, минерала), между которыми имеется граница раздела.

В древесном композите граница раздела между компонентами может проходить но наружной поверхности и по внутренней поверхности, т.е. по поверхности сосудов, волокон и пор древесины.

Увеличение производства древесных композитов в значительной мере определяется тем, что объем потребления материалов на планете каждые 11 лет удваивается, а запасы сырья для производства традиционных материалов ограничены и не восстанавливаются.

В этих условия особенно пристальное внимание обращено на древесные материалы. Ежегодный прирост твердой биомассы лесов мира 50 млрд. т, прирост промышленной древесины составляет 3,5-4 млрд.т в год, а добывается в мире лишь 1,1-КЗ млрд. т и год. Из всего лесного массива используется около 7,5% древесины, причем в так называемых «отходах» оказывается не менее 30% промышленной древесины. Следовательно, сейчас в мире образуется 330 1260 млн. т (ориентировочно 660-2400 млн. плотных кубометров) «отходов» древесины, из которых можно изготавливать композиционные материалы в количествах, равных выпуску стали, алюминия и пластмасс, вместе взятых по массе. Эта сырьевая база не иссякнет и в дальнейшем, так как лес непрерывно возобновляется и жизнь на планете возможна лишь при наличии леса, дающего кислород и защищающего людей экологически. Возобновляем ость и высокая экономическая эффективность - основные факторы, гарантирующие древесным композитам положение материалов будущего. Их дополняют невысокая плотность (50-1400 кг/м")« достаточная прочность (до 300 MI la ).

Древесные пластики (wood plastics , holzplaste , plastiques du bois ) - материалы на основе древесины, подвергнутой термической обработке под давлением (пластификации). Древесные пластики делятся на:

1) древесину прессованную (пластифицированную);

2) древесно-слоистые пластики;

3) древесную пресскрошку;

4)древесные плиты (древесноволокнистые и древесностружечные).

Древесные плиты. ДВП

Основные понятия

Древесноволокнистыми плитами называются листовые материалы, сформированные из переплетных древесных волокон. Изготавливают их из древесных отходов или из низкокачественной древесины. В отдельных случаях в зависимости от условий снабжения предприятия сырьем применяют одновременно как древесные отходы, так и древесину в круглом виде. Наиболее распространенные способы изготовления плит - мокрый и сухой. Промежуточными между ними, причем менее распространенными, будут мокросухой и полусухой способы.

Мокрый способ основан на формировании ковра из высушенной древесноволокнистой массы в водной среде и горячем прессовании нарезанных из ковра отдельных полотен, находящихся во влажном состоянии (при относительной влажности 60-70%).

Сухой способ основан на формировании ковра из высушенной древесноволокнистой массы в воздушной среде и горячем прессовании полотен, имеющих влажность 5 – 8%

Полусухой способ основан па формировании ковра из высушенной древесноволокнистой массы в воздушной среде и горячем прессовании полотен, имеющих влажность 16-18%.

Мокросухой способ основан на формировании ковра из древесноволокнистой массы в водной среде, сушке полотен и горячем прессовании сухих полотен, имеющих влажность, близкую к нулю.

В процессе изготовления плит любым из названных способов древесину сначала измельчают в щепу, а затем щепу превращают в волокна, из которых формируют ковер. Ковер разрезают на полотна. Сухие полотна прессуют в твердые плиты. Влажные полотна или прессуют, получаю I твердые или полутвердые плиты, или сушат, получая мягкие (изоляционные) плиты.

В волокнистую массу для придания водостойкости вводят различные эмульсии (парафиновые, смоляные, масляные) и осадители (сернокислый алюминий). Плиты формируются на отливочных машинах. Влажность плит после отливок достигают 70%. Поэтому изоляционные плиты поступают на сушку, а твердые и полутвердые прессуют в горячих многоэтажных прессах (t 135 -180 °С).

Твердые и сверх твердые плиты затем проходят закалку при t 150-170 °С с последующим увлажнением до 5 - 7% (по массе).

В основу деления плит на виды и марки положены средняя плотность и прочность при изгибе. В зависимости от средней плотности ДВП разделяют на виды: мягкие (М) со средней плотностью не более 350 кг/м 3 ; полутвердые (ПТ) - не менее 400 кг/м 3 ; твердые (Т) - не менее 850 кг/м 3 и сверхтвердые (СТ) - не менее 950 кг/м 3 .

В зависимости от прочности при изгибе ДВП разделяют на марки: М-4; М-12: М-20; ПТ-100; Т-350; Т-400; СТ-500. В условном обозначении марки цифры отражают величину прочности при изгибе в кгс/см 2 или в МПа, если цифровые индексы уменьшены в 10 раз.

Существенный показатель качества сверхтвердых, твердых и полутвердых плит- гигроскопичность. Стандарт допускает величину набухания плит после суточного нахождения испытываемых образцов в воде: для твердых и полутвердых - не более 20%, а для сверхтвердых не более 12%. Водопоглощение же установлено: для сверх твердых плит - 15%, для. твердых - 30%, для полутвердых - 40%. Плиты, изготовленные сухим способом, обладают значительно меньшей гигроскопичностью 10–12% так как при их изготовлении применяют фенолформальдегидные смолы.

Сырье для производства ДВП

Сырьем для ДВП могут служить любые волокнистые материалы растительного происхождения, если ихволокна достаточно длинные, гибкие и прочные: все виды древесины, стебли пшеницы, хлопчатника, кукурузы, кенафа и др. Однако основными видами сырья, широко используемыми в производстве, являются: неделовая древесина, т.е. непригодная для строительных и иных целей (долготе и коротье); отходы лесопиления (горбыль, рейка, вырезки); отходы спичечного и фанерного производства (шпон некондиционный, брак соломки и лом коробки); бумажная макулатура.

Целесообразность применения того или иного вида сырья зависит; прежде всего, от того, есть ли оно в данном районе, от стоимости, условий доставки к месту переработки.

Основное сырье - древесина - состоит из целлюлозы; лигнина и гемицеллюлозы, образующих оболочку клеток, а. также из смол, эфирных масел, дубильных и красящих веществ, заполняющих клетки. Целлюлоза - химически стойкое вещество, не растворяющееся в воде и гидролизующееся при давлении 1...1,5 МПа и температуре 180°С. Строение ее кристаллическое, состоит она из кристаллитов мицелл в виде палочек длиной 500,..700 А и толщиной 50...60 А. Мицеллы и фибриллы составляют клетки удлиненной волокнообразной формы. В древесине лиственных пород такие клетки, занимающие 60...65% объема, называют волокнами либриформа, их длина около 1 мм; в древесине хвойных пород содержание волокнообразных клеток трахеид- длиной 3...10мм достигает 90...95% по объем}.

Трахеиды длиннее, толще и прочнее» чем волокна либриформа, поэтому в производстве ДВП предпочтение отдается древесине хвойных пород.

Лигнин - аморфное вещество, представляющее собой сложное сочетание нескольких химических соединений. Химически он менее стоек, чем целлюлоза, по не гидролизуетея. В производстве ДВ11 лигнин повышаем выход массы и в процессе прессования способствует образованию дополнительных связей между волокнами. Гемицеллюлоза по составу близка к целлюлозе и состоит из пентозанов и гексозанов. Гексозаны при горцем прессовании гидролизуются и способствуют образованию смолоподобных продуктов.

Технология древесноволокнистых плит довольно сложна и энергоемка. Процесс производства ДВП можно разделить на две практически самостоятельные части: получение древесных волокон путем последовательного измельчения древесины и переработка волокон в изделия.

Получение древесных волокон -- процесс весьма многодельный и энергоёмкий, он включает следующие последовательно осуществляемые операции: снятие коры с древесины (окоривание), распиловку дровяном) долготья, колку толстых чураков, рубку древесины в щепку, размол щепы и получение волокнистой массы. Далее производят подготовку волокнистой массы путем ее сортировки, сгущения и проклейки. Формование изоляционных. ДВП осуществляют мокрым способом из гидромасс, который основан на свободном их обезвоживании с последующим вакуумированием и подпрессовкой. Производственный процесс заканчивается сушкой изделий. Прочность мягких ДВП обеспечивается только за счет переплетения древесных волокон, (свойлачиваемое), поэтому к весному волокну для этого типа продукции предъявляют повышенные требования. Для обеспечения лучшей свойлачиваемое волокна должны иметь высокую удельную поверхность и быть достаточно длинными, поэтому в данном случае предпочтение отдается древесине хвойных пород.

Т
ехнологическая схема производства мягких (изоляционных) ДВП

Стадия приготовления щепы

Приготовление щепы осуществляют из предварительно окоренной древесины. Окоривание поступившего на завод сырья (длинномерной древесины, коротая, отходов лесопиления и т. п.) производят, а корообдирочных барабанах водоструйных корообдирках или на ножевых корообдирочных станках. Кора ухудшает внешний вид изделия, увеличивает его водопоглощение при содержании ее в массе свыше 17% существенно снижает механическую прочность.

Освобожденная от коры древесина поступает на грубое измельчение. Длинноразмерную древесину распиливают /(исковыми пилами с горизонтальной (балансирные пилы) или вертикальной (маятниковые пилы) качающейся рамкой. Толстые чураки раскалывают на дровокольных станках с неподвижным или движущимся поступательно -возвратно клипом. Полученные заготовки длиной 1500 мм измельчают в щепу на специальных рубильных машинах, рабочим органом которых является массивный стальной диск толщиной 100 мм и более и диаметром до 3000 мм на котором закреплены ножи. В зависимости от диаметра диска количество ножей может изменяться от 10 (при диаметре 2000 мм) и более. Диск приводится во вращение электромотором, его частота вращения 585 мин.

Древесину легче рубить вдоль волокон, чем поперек, поэтому поленья подаются к диску под углом 35... 45° по специa льному наклонному лотку.

Для нормальной работы размольных агрегатов необходимо получать щепу одинаковых размеров: длина вдоль волокон 20...25 мм, поперек волокон 1.5..30 мм и толщина 3...5 мм. Из рубильной машины щепа выходит неодинаковая по величине, поэтому она сортируется на вибрационных плоских или барабанных ситах, Отсортированная щепа подастся на мелкое измельчение к размольным агрегатам. Предварительно ее промывают в промывочном баке и затем на обезвоживающем винтовом конвейере, где щепу дополнительно промывают, свежей водой.

Стадии получения древесного волокна

Получение древесного волокна осуществляют одним из грех способов: механическим, термомеханическим или химико-механическим.

Необходимость размола заключается в получении тонких волокон с длиной, обеспечивающей хорошую свойлачиваемостъ при формировании ковра. Качество получаемого волокна (толщина и длина) зависит от породы применяемой древесины и способа его получения.

Качество волокна оценивается по скорости обезвоживания гидромассы, С учетом этого сконструирован прибор, с помощью которою по скорости свободного водоотделения определяют тонкость помола волокна в градусах Шопера-Риглера (°ШР) - автора при­бора.

В зависимости от применяемого вида древесины, способа размола и типа размольной машины получаемое волокно может иметь средний диаметр 30...50 мкм и среднюю длину от сотых долей миллиметра до 3...4 мм. Слишком короткие волокна не могут быть использованы для получения мягких ДВП, поэтому выбор способа размола и типа размольной машины при их производстве имеет решающее значение.

Механический способ получения волокна основан на истирании чу раков быстровращающимися рифлеными дисками без прогрева или с прогревом древесины, с применением химических веществ и других средств, облегчающих размол древесины. Процесс развертывания удельной поверхности древесноволокнистой массы при этом способе размола связан с большой затратой энергии.

Как правило, в размольные аппараты добавляют большое количество подогретой воды для облегчения размола и повышения выхода кондиционной волокнистой массы. Механический способ размола не нашел широкою применения вследствие больших затрат электроэнергии (800 кВт на 1 т сухой волокнистой массы) и невозможности переработки древесины в виде теша.

Термомеханический способ размола древесины основан на двустадийной обработке щепи: предварительном разогреве ее горячей водой (не ниже 70°С) или паром высокого давления с температурой 170... 190°С и последующем истирании ее между вращающимися с разной скоростью или в разные стороны рифлеными дисками. Разогрев щепы обычно производят в специальной камере размольной машины (дефибратора или рафинатора). Под воздействием теплоты и влаги лигнин древесины размягчается, ослабляя связи между волокнами; легко гидролизуемые углеводы гидролизуются и расщепление древесины на волокна существенно облегчается. Древесное волокно, получаемое этим способом, характеризуется ненарушенной структурой при высокой тонкости помола. В зависимости от требуемой тонкости волокон размол осуществляют в одну или две стадии. При производстве мягких ДВП необходим двустадийный размол.

Для первичного помола применяют дефибраторы или быстроходные рафинеры - машины с быстровращающимися рифлеными дисками, а для повторного - рафинаторы, голлендеры, обеспечивающие тонкий размол при более мягком воздействии па древе­сину. Термомеханический способ наиболее распространен в практике приготовления древесноволокнистой массы, для нею характерно получение массы с высоким содержанием длинных и тонких волокон при сравнительно небольшом расходе электроэнергии (200..,260 кВт на 1 т сухого волокна), что достигается за счет термовлажностной обработки щепы.

Химико-механический способ основан на различной растворимости компонентов древесины в слабом растворе щелочи и реализуется в два этапа: проваривание древесной щепы в слабощелочном растворе и механический размол проваренной щепы. При варке древесины в слабощелочном растворе происходит полное постепенное растворение лигнина и частичное гемицеллюлозы и инкрустирующих веществ, соединяющих волокна. Это существенно облегчает размол древесины и обеспечивает получение эластичных длинных волокон, пригодных для производства высококачественных мягких плит.

Однако глот способ не получил широкого применения вследствие сложности химической подготовки сырья перед размолом и малого выхода волокна (до 80%).

Полученную при первичном размоле древесную массу разбавляют водой до концентрации 03...0,5% и подвергают мокрой сортировке путем пропускания гидромассы через плоские сита с размером отверстий 5...6 мм. Недомолотые частицы сгущают до 4...5% и направляют на повторный размол. Гидромассу из кондиционных волокон направляют на вторичный помол, для которого широко используют голендоры непрерывного действия, в которых получают эластичное и хорошо гидратированное волокно.

Стадия подголовки волокнистой массы

Подготовка волокнистой массы для формования плит включает повышение концентрации волокон до 2,5...3% с целью уменьшения емкости массовых бассейнов и снижения электроэнергии, потребной на ее перекачку, и проклейку массы.

Сгущение гидромассы производят в особых аппаратах - сгустителях, из которых се затем перекачивают или направляют самотеком в массовые бассейны, оборудованные смесительными механизмами. Проклейку волокнистой массы (обработка ее эмульсиями химических веществ) производят при непрерывном перемешивании гидромассы для улучшения свойств готовых изделий. Прочность ДВП повышают введением в гидроволокнистую массу водных эмульсий окисляющихся масел (льняного, конопляного и др.) либо синтетических (фенолоформальдегидных и др.) смол. Повышения водостойкости достигают введением гидрофобных эмульсий, в основном парафиновой, канифольной, битумной, в количестве до 2%. Эмульсия осаждается на волокно в кислой среде (рН - 4...5); для получения такой среды в гидромассу вводят серную кислоту (1%) или сернокислый глинозем (0,5%). Повышения биостойкости ДВП добиваются введением в гидромассу антисептиков (фтористого и кремнефтористого натрия, крезола и др.). Огнестойкость повышают за счет введения антипиренов (сернокислого аммония, железоаммонитофосфата и др.). Следует отметить, что введение перечисленных водорастворимых добавок эффективно при сухом способе производства ДВП, т. с. твердых их разновидностей. При мокром же способе (при получении мягких ДВП) эффект проклейки заметно снижается, так как при обезвоживании ковра во время формования изделий часть добавок уходит из массы с отжимными водами.

Стадия формования

Формование мягких ДВП осуществляют на отливочных машинах непрерывного и периодического действия. Обезвоживание волокнистой гидромассы на отливочных машинах происходит последовательно путем свободной фильтрации воды через сетку, отсоса вакуумированием и отжима подпрессовкой.

При свободной фильтрации взвешенные в воде волокна сближаются и переплетаются, возникают силы сцепления друг с другом, т. е. происходит свойлачивание. При этом гидромасса обезвоживается и на сетке машины формируется ковер с относительной влажностью 90...92%. Дальнейшее понижение влажности и уплотнение ковра происходят вакуумированием и отжимом (до влажности 60...70%), Наибольшее распространение для формования ДВП получили длинносетчатые отливочные машины непрерывного действия. Процесс формирования на этих машинах осуществляется следующим образом. Гидромасса через щель поступает на непрерывно движущуюся ленту отливочной машины, огражденную бортами. Для улучшения переплетения волокон на отливочных машинах устанавливаю! вертикальный вибратор. Свободная фильтрация воды прекращается при достижении концентрации волокна в массе 7...10%, далее масса поступает в отсасывающую часть машины, оборудованную вакуум-насосами, где ее концентрация увеличивается до 12.. Л 6%.

Стадия тепловой обработки

Тепловую обработку мягких ДВП производят в трехтонныхмногоэтажных роликовых сушилках непрерывного действия, работающих по принципу противотока с рециркуляцией теплоносителя. Длина роликовых сушилок может колебаться от 30 до 90 м. Чаще используют сушилки длиной 30 м. Продолжительность сушки при температуре теплоносителя 130...160°С составляет3 ч. В конце сушки предусмотрена юна охлаждения. Следует отметить, что производство ДВП является энергоемким. В среднем на 1 т плит затрачивается 550 ... 650 кВт -ч электроэнергии, 4..Д5 т пара и около 110 кг условного топлива. Высокая энергоемкость объясняется большими затратами электроэнергии, идущими на помол древесины. В процессе производства затрачивается значительное количество топлива на тепловую обработку сырья и сушку изделий.

Применение

Изоляционные плиты используют для тепло- и звукоизоляции стен, потолков, полов, перегородок и междуэтажных перекрытий, утепления кровель (особенно в деревянном домостроении), акустической отделки специальных помещений (радиостудий, машинописных бюро, концертных залов и т.п.). Стандартные изоляционные плиты применяют для дополнительного утепления стен, потолков и полов, а также для увеличения прочности стенных каркасов. Они могут быть применены для внутреннего покрытия и потолков перед окончательной отделкой. Ветрозащитные изоляционные плиты применяются для уплотнения и упрочнения внешних стен, потолков и крыш зданий. Их также применяют в качестве выравнивающих слоев под твердые покрытия полов и звукоизоляционных прокладок. Изготовление ДВП - один из перспективных способов использования древесных отходов и неделовой древесины.

Древесностружечные плиты

Древесностружечная плита (ДСП) - материал, получаемый путем склеивания частиц древесины связующим веществом, нанесенным на их поверхность, при прессовании в результате создания контакта между частицами древесины и воздействия тепла. В этом искусственно созданном материале пористой структуры древесные частицы расположены параллельно плоскости плиты и дезориентированы но направлению волокон. Таким образом, анизотропия свойств плит, определяемая структурой, отсутствует в плоскости и существует перпендикулярно плоскости материала. Объём порового пространства в плите определяется плотностью и содержанием связующего. От этих двух характеристик в основном зависят свойства материала. Содержание связующего колеблется в пределах 7 - 15% (считая на сухие вещества от массы абсолютно сухой древесины) в зависимости от конструкции, вида и назначения плит.

Образование ДСП происходит при воздействии тепла в результате перехода связующего в олигомерной форме в неплавкое и нерастворимое состояние сетчатой структуры и возникновение адгезионных связей между компонентами древесины и связующего. На направление этих процессов большое влияние оказывают условия прессования. ДСП изготавливаются горячим прессованием древесной стружки. Себестоимость изготовления древесной стружки ниже себестоимости древесного волокна. В качестве связующего применяют мочевино-формальдегидные, феполо-формальдегидныеидругиесмолы.

Древесностружечные плиты классифицируют, но способу прессования, конструкции, виду измельченной древесины, применяемому связующему, облицовочному материалу. По способу прессования различают древесностружечные плиты плоского прессования и экструзионные, т. е. полученные выдавливанием. Первые изготовляют с приложением прессующего усилия перпендикулярно плоскости плиты, а вторые параллельно ей. По конструкции плиты плоского прессования выпускаются одно-, трех-, пяти- и многослойными; экструзионные - однослойными сплошными и с внутренними каналами. В однослойных плитах размеры древесных частиц и содержание связующею одинаковы по всей толщине плиты. В трех- и пятислойных плитах один или оба наружных слоя (с каждой стороны) изготовляют из более тонких частиц и с повышенным содержанием связующего по сравнению с внутренними слоями. Такие плиты имеют гладкую поверхность и обладают высокой прочностью. ДСП выпускают облицованные и необлицованные (одним или двумя слоями лущеного или строганого шпона, бумагой, пропитанной синтетическими смолами, синтетической пленкой). ДСП изготовляют шлифованные и нешлифованные. По плотности (в зависимости от способа прессования и марки) древесностружечные плиты подразделяют на группы: очень малой плотности (350 -450 кг/м 2). малой (450 - 650), средней (650 - 800), высокой (700 - 800). Основные размеры ДСП (мм): плоского прессования - длина 2500 - 3500; ширина 1220 - 1750; толщина 10 - 25; экструзионные - длина 2500; ширина 1250; толщина 15 - 52. Физико-механические свойства ДСП в основном зависят от объемной массы, формы и размеров древесных частиц, количества и качество связующего, конструкции и др. ДСП характеризуются следующимипоказателями:влажность8%; водопоглощение 12 - 88%; коэффициент теплопроводности 0.06 - 0.22 ккал/(м*ч*°С); удельная теплоемкость 1/7 - 1.9 кДж/(кг*К); разбухание (за 24 часа) по толщине 5 - 30%; предел прочности при растяжении перпендикулярно плиты 0.25 - 0.4 Мн/м 2 (2.5-4 кг/см 2).

Связующие и добавки

Наиболеераспространеннымисвязующими

веществами, применяемыми для изготовления ДСП различногоназначения,являются карбамидоформальдегидные олигомеры благодаря ряду преимуществ: способности к быстрому отверждению в присутствии ускорителей, сочетанию сравнительно высокой концентрации с пониженной вязкостью. Они обеспечивают высокую прочность ДСтП, используемых в производстве мебели и частично в строительствеуступая другим смолам главным образом в стойкости к одновременному и длительному воздействию влахи и повышенной температуре (более 60 °С). Карбамидоформальдегидные смолы примерно в два раз дешевле фенолоформальдегидных. Фенолоформальдегидные олигомеры обеспечивают образование клеевых соединений, способных хорошо сопротивляться переменным воздействиям повышенной влажности и температуры окружающей среды. Однако они требуют применение более высоких температур прессования плит или удлинения продолжительности этого процесса. Кроме того, существенное улучшение показателей водостойкости достигается "только при введении более 15% смолы. Применение фенолоформальдегидных смол для ДСтП ограниченно так же неудовлетворительными санитарно-гигиеническим и свойствами, связанными с токсичностью фенола. Меламиноформальдегидные олигомеры обладают всеми преимуществами карбамидо- и фенолоформальдегидных и не имеют их недостатков. Меламиноформальдегидные смолы обладают высокой вода и теплостойкостью. Однако из-за ограниченного объема производства и дороговизны меламина они не нашли широкого применения для изготовления ДСП.

В состав ДСтП применяют введение 0.5 - 1.0% гидрофобизаторов. К числу гидрофобизаторов относят: парафин, церезин, петролатум, воск и их эмульсии. Эмульгаторами этих веществ являются мыло, поверхностно-активные вещества (I 1 AB ) и др. Лучшим эмульгатором признан ПАВ марки ОП-7. Основным недостатком перечисленных гидрофобизаторов является их временное воздействие на уменьшение водопоглощения. Самым эффективным гидрофобизатором, как и для ДВП является а тактический полипропилен (АПП). В состав ДСтП его вводят в количестве да 3.0%.

Трудновоспламеняемые ДСП получают путем введения в их состав смеси ортофосфорной кислоты и хлористого цинка в соотношении, от 2: 5 до 5: 2. Трудносгораемые ДСтП получают введением гранулированной борной кислоты в количестве 5 - 10%.

Применение

Древесностружечные плиты - один из наиболее перспективных конструктивно-отделочных материалов для мебельной промышленности и строительства по сравнению с пиломатериалами и другими листовыми материалами. По показателям прочности и жесткости они приближаются к древесине хвойных пород.

Общие привила техники безопасности.

Основными. задачами техники безопасности на предприятии и на строительстве являются: организация работ по предохранению рабочих от производственных травм, разработка мероприятий по улучшению условий труда, оградительной техники и средств защиты. Каждый вновь поступивший рабочий может быть допущен к работе лишь после обучения и проведения инструктажа по технике безопасности. Инструктажи о од разделяются на вводный, первичный на рабочем месте, повторный, внеплановый и текущий. Вводный инструктаж перед допуском к работе проводит инженер по охране труда с каждым вновь поступившим рабочим путем беседы и показа наглядныхпособий. Первичный на рабочем месте. повторный, внеплановый и текущий инструктажи проводит непосредственный руководитель работ. Первичный инструктаж проводят на рабочем месте со всеми вновь принятыми рабочими путем показа безопасных приемов и методов работы. Повторный инструктаж проводят с целью повышения уровня знаний работающих, а внеплановый -при изменении правил по охране труда и изменения технологического процесса. При инструктажерабочий узнает правила поведения на территории, основные причины, вызывающие травматизм (неисправность оборудования, инструмента электросети и т. п., неправильные приемы работы); знакомится с правилами поведения в зоне работ кранами, автотранспорта и при погрузочно-разгрузочных работах, О проведении первичного на рабочем месте, повторного и вне лапового инструктажей работник, проводивший инструктаж, делает запись в журнале регистрации инструктажа на рабочем месте с обязательной подписью инструктируемого и инструктирующего. На рабочем месте инструктаж проводит мастер или производитель работ, подробно объясняет безопасные приемы работы, оградительнуютехнику,рассказываетоб электробезопасности, порядке содержания рабочего места, устройстве механизма, правилах пуска, остановки и смазывания станков.

Техника безопасности и организация рабочих мест при монтаже деревянных конструкций. Деревянные конструкции в проектное положение поднимают посредством инвентарных строп, для чего их прикрепляют к конструкциям, в затем подвешивают к крюку подъемного механизма. Стропуют элементы и конструкции но заранее утвержденным схемам с учетом прочности и устойчивости поднимаемых конструкций. К месту установки их подают в положении, близком к проектному. Во избежание раскачивания конструкций при подъеме следует применять оттяжки из пенькового или гонкого гибкого троса, прикрепляя их временно к концам конструкции. При прикреплении троса к оконным или дверным блокам надо следить за тем; чтобы не нарушить гидроизоляцию, проложенную по периметру блока. При подъеме или опускании стоять под изделиями или под стрелой крана категорически запрещается.

Зона монтажных работ; опасная для нахождения людей в процессе перемещения или монтажа конструкций, должна быть обозначена предупредительными знаками и надписями; Поднятые элементы, конструкций опускаются на место установки не выше 300 мм от -проектного положения, после чего монтажники устанавливают их на место. Выполнять монтажные работы в открытых местах на высоте при силе ветра более 15 м/с, гололедице, грозе или тумане не допускается. Входы в помещения и проходы в нижних этажах зданий, над которыми ведется монтаж, должны быть закрыты для доступа людей. Все сигналы машинисту крана или мотористу лебедки, а также рабочим на оттяжке должны подаваться одним лицом - бригадиром монтажнойбригады,звеньевымили такелажником-стропальщиком Сигнал «Стоп» может подаваться любым работником, заметившим явную опасность, Перед началом работ бригадир, мастер или производитель работ обязаны детально ознакомить рабочих е предстоящей работой и проинструктировать о способах ее выполнения. Верхолазные работы при монтаже могут выполняться рабочими не моложе 18 лет.

Электробезопасность. При работе вероятность поражения током работающего зависит от среды, в которой он работает. В помещениях, в которых производится работа, относительная влажность воздуха не должна превышать 60 %, Для обеспечения постоянной работы делают защитное заземление, которое защищает людей от поражения током. Для предохранения работающих от поражения током делают быстродействующее устройство, отключающее электроустановки при опасности поражения током. При соприкосновении человека с токоведущими частями действующей электроустановки создается опасность поражения током. Опасна для жизни человека сила тока - 0,05 А, а 0,1 А, т. е. в 2 раза большая, смертельна. Не изолированные токоведущие части ограждают так, чтобы к ним не было свободного доступа. Электроинструмент следует систематически проверять на отсутствие замыкания на корпус; кроме того, следует проверять перед работой исправность подводящего кабеля. Электроинструмент должен быть заземлен, при отсутствий заземления работать электроинструментом запрещается. К работе с механизированным инструментом допускаются лица, прошедшие производственное обучение и имеющие соответствующее удостоверение.Ремонтировать, регулировать и настраивать механизированный инструмент можно только после его отключения и полной остановки. При работе с электроинструментом следует пользоваться защитными очками; В процессе работы запрещается натягивать и перегибать кабели инструментов. В особо опасных помещениях. а также вне помещений работать электроинструментом можно при напряжении не более 36 В. Пусковую аппаратуру размещают таким образом, чтобы посторонние лица не могли запустить машины и механизмы. Рубильники должны быть оборудованы кожухами. Металлические строительные леса, рельсовые нуги электрических грузоподъемных кранов и другие металлические части строительных машин и оборудования с электроприводом, корпуса электродвигателей, кожухи рубильников должны быть заземлены. Ручные переносные светильники должны иметь защитную металлическую сетку, причем напряжение на них должно быть не более 36 В, а в особо опасных местах (траншеи, колодцы) 12 В. Штепсельные соединения с напряжением 12 и 36 В должны иметь цвет, резко отличающийся от штепсельных соединений с напряжением более 36 В. Резиновые защитные средства перед применением осматривают. очищают от грязи, вытирают. Защитные средства, имеющие проколы, трещины, применять нельзя. При пилении, фрезеровании, шлифовании надо пользоваться защитными очками, В особо опасных помещениях и с повышенной опасностью поражения электрическим током работать электроинструментом можно при напряжении не выше 12 В. Корпуса электроинструментов, работающих при напряжении более 42 В, должны быть заземлены. Рабочие и инженерно-технические работники, занятые эксплуатацией и ремой том электрических установок, должны уметь освобождать пострадавших лиц от тока и оказывать им первую помощь, Мри поражении человека надо немедленно устранить воздействие на него тока путем отключения рубильника, предохранителей и т. д. Человек, спасающий пострадавшего, должен обезопасить себя, надев галоши, резиновые или сухие шерстяные перчатки и наскоро обмотав руки сухой тряпкой. После снятия напряжения нужно срочно вызвать врача для оказания медицинской помощи.

Пожарная безопасность . Пожары могут нанести большой ущерб любому хозяйству. Основными, причинами пожаров являются: неумелое обращение с огнем на открытых площадках, курение в пожароопасных местах, неисправности в электросети, неправильное хранение легковоспламеняющихся материалов, загромождение цехов и территории и т. п. Укладывать сгораемые предметы (пиломатериалы) на строительной площадке можно на расстоянии не менее 15 М от строящихся зданий или временных сооружений. Склады горючих и смазочных материалов следует располагать со стороны, противоположной господствующим ветрам, и на большом расстоянии от зданий. Надо систематически проверять электросеть и своевременно устранять ее неисправность. Временные металлические и электрические печи можно устанавливать только по согласованию с органами пожарного надзора, В местах, отведенных для курения, следует поставить бочки с водой и ящики с песком для окурков. На строительной площадке должны быть оборудованы противопожарные посты с огнетушителями, ведрами, лопатами, ломами, баграми, гидропультом и топорами. У гидропульта обычно устанавливают бочки с водой. Места, где водопровод отсутствует, оборудуют закрытыми водоемами с мотопомпами на расстоянии 150-200 м от зданий. Пожарная профилактика предусматривает мероприятия, направленные на предупреждение возникновения пожаров, т. е. создание условий, препятствующих распространению огня, меры по эвакуации людей, материалов, оборудования при возникновении пожаров, а также план работы людей но быстрейшей ликвидации пожара. Склады пиломатериалов должны содержаться в чистоте и иметь необходимые дороги и проезды. Территорию склада надо систематически очищать от отходов - коры, щепы. Курение на складах, а также разведение костров категорически запрещается. В лешие дни территорию склада, а также территорию предприятия надо поливать водой. Разрывы между штабелями и группами штабелей должны соответствовать предусмотренным нормам. Склад должен быть оборудован противопожарным водопроводом, водоемами. Небольшие склады должны иметь чаны с водой, огнетушители, В деревообрабатывающих цехах нужно следить за состоянием электрооборудования, пусковой аппаратуры, силовой и осветительной сети. Обтирочные материалы следует хранить в специальных закрытых металлических ящиках и периодически их очищать. Необходимо систематически смазывать подшипники, не допуская их перегрева. Хранить сверхнормативные запасы пиломатериалов, заготовок и деталей в цехах не допускается. Все проходы и подходы к пожарным кранам должны быть всегда свободными и доступными. В малярных цехах нельзя работать без надежно действующей вентиляции, чтобы не образовалась взрывоопасная концентрация паров лакокрасочных материалов. Цехи, кроме пожарного водопровода, должны быть обеспечены средствами пожаротушения, расположенными в удобных местах. Для подачи сигналов о пожаре в цехе, в мастерской должна быть установлена пожарная сигнализация. В случае ее отсутствия необходимо установить сирены, колокола и т. п. Каждый работающий, заметив пожар, обязан немедленно (по телефону) вызвать пожарную команду, а если нет телефона, дать другой какой-либо сигнал и принять меры по тушению пожара местными средствами. Для обеспечения борьбы с пожарами и профилактики пожаров на каждом строительстве и предприятии из состава работающих создаются добровольные пожарные дружины, активно участвующие в тушении пожаров.

Список литературы

1. Горлов Ю.П. Технология теплоизоляционных и акустических материалов и изделий: Учеб. для вузов по спец. "Пр-во строит, изделий и конструкций". - М.: Высш. шк, 1989.

2. Вигдорович А.И., Сагалаев Г.В., Поздняков А.А. Древесные композиционные материалы машиностроения: справочник. М: Машиностроение, 1991.

3. Ковальчук Л.М. Производство деревянных клеевых конструкции. М: Лесная промышленность, 1987.

4. Поташев O .K ., Лапшин Ю.Г. Механика древесных плит М: Лесная промышленность, 1980.

5. Ребрин СП., Мерсов Ь.Д., Евдокимов Е.Г. Технология древесноволокнистых плит. М: Лесная промышленность, 1982.

6. ЭльбсртА А.Химическаятехнология древесностружечных плит М: Лесная промышленность, 1984.

Введение....................................................................................

Древесные плиты. ДВП............................................................

Основные понятия....................................................................

Технология производства мягких (изоляционных) ДВП ….

Технологическая схема производства мягких

(изоляционных) ДВП..............................................................

Стадия приготовления щепы.................................................

Стадия получения древесного волокна.................................

Стадия подготовки волокнистой массы...............................

Стадия формования................................................................

Стадия тепловой обработки...................................................

Древесные плиты. ДСП........................................................

Связующие и добавки ДСП.................................................

Применение.............................................................................

Общие правила техника безопасности...............................

Список литературы...............................................................


Сырьевая база производства. Породы древесины, гниль и другие дефекты. Форма, влажность и плотность древесного сырья. Производство мягких древесноволокнистых плит и физико-химические основы рассматриваемого процесса. Использование воды и энергии.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

Пояснительная записка содержит 51 страниц, 13 рисунков, 9 таблиц, 10 источников.

ОТХОДЫ ЛЕСОПИЛЕНИЯ, ЩЕПА, ДРЕВЕСНОВОЛОКНИСТЫЕ ПЛИТЫ, ДРЕВЕСНОВОЛОКНИСТАЯ МАССА, ДРЕВЕСНОВОЛОКНИСТЫЙ КОВЕР, ДРЕВЕСНОВОЛОКНИСТОЕ ПОЛОТНО, СУХОЙ МЕТОД ПРОИЗВОДСТВА.

Целью данной курсовой работы является рассмотрение технологии производства древесноволокнистых плит (ДВП). Рассмотрены основные методы производства, наиболее подробно рассмотрен и проанализирован сухой способ производства ДВП.

Для этого было рассмотрено основное сырье, технология, физико-химические основы производства, основное оборудование, жизненный цикл продукции. Проведен анализ использования сырья и материалов.

В работе также рассмотрены источники воздействия данного производства на окружающую среду. Сделаны выводы о возможных методах уменьшения негативного воздействия.

Графический материал включает 1 лист иллюстративного материала формата А1, на котором изображена технологическая схема производства ДВП сухим способом.

Введение

1. Сырьевая база производства

1.1 Породы древесины

1.3 Гниль и другие дефекты

1.4 Форма, влажность и плотность древесного сырья

2. Характеристика способов производства

2.1 Мокрый способ производства ДВП

2.1.1 Производство мягких древесноволокнистых плит

2.2 Сухого способ производства ДВП

2.2.1 Производство ДВП периодическим способом с применением многоэтажного гидравлического пресса

2.2.2 Производство непрерывным способом с применением каландрового пресса

3. Физико-химические основы рассматриваемого процесса

4. Технологическая схема производства

4.1 Технологическая схема процесса

4.2 Характеристика основного оборудования

4.3 Анализ использования сырья и материалов

4.4 Использование воды и энергии

4.4.1 Использование воды

4.4.2 Использование электроэнергии

5. Жизненный цикл продукции и основные виды воздействия производства на окружающую среду

5.1 Жизненный цикл продукции

5.2 Основные виды воздействия производства на окружающую среду

Заключение

Список использованных источников

Введение

Древесноволокнистые плиты (ДВП) в настоящее время производятся в довольно больших объемах во многих странах мира (США, Япония, Швеция, Россия и другие), в том числе и в Республике Беларусь. В СНГ функционирует более 60 крупных предприятий. Эти плиты не только полноценно заменяют натуральную древесину в листовом виде, но и обладают целым рядом полезных свойств (теплопроводность, звукопоглощение, звукоизоляция, огнестойкость, биостойкость), не присущих древесине, поэтому имеют широкую область применения, которая непрерывно расширяется, в особенности в производстве мебели, где ДВП в виде МДФ хорошо известны как конструкционный и отделочный материал. Основное количество ДВП производится на предприятиях, расположенных в Бобруйске, Витебске, Борисове, Пинске, Мостах, Ивацевичах. В ОАО «Мозырьдрев» запланирован ввод в действие цеха по производству особого вида ДВП по сухому способу - изоляционных с широким диапазоном толщины и свойств. Их отличительной особенностью являются экологическая чистота и целевое направление использования - в строительстве зданий и сооружений. Около 26 % ДВП используется на внутреннем рынке, остальное поступает на экспорт (в Россию, Польшу, Литву и др.). На долю Республики Беларусь приходится 0,43 % общемирового производства ДВП. ДВП производят из неделовой древесины и древесных отходов, а именно сырьём является технологическая щепа, а также отходы лесопильных и деревообрабатывающих предприятий. ДВП успешно используют в домостроении, при изготовлении мебели и тары, в машиностроении в качестве экологически чистого конструкционного и отделочного материала. Это обуславливает необходимость увеличения объёмов выпуска плит, расширения ассортимента и повышения качества . В связи с этим считаю данную тему актуальной для изучения.

1. Сырьевая база для производства древесноволокнистых плит

Выбор сырья определяется экономической целесообразностью с учетом величины его запасов, условий заготовки, доставки и хранения. Для производства древесноволокнистых плит в качестве первичного сырья применяют стволовую древесину хвойных и лиственных пород, древесину рубок ухода за лесом, стебли однолетних растений.

В качестве вторичного древесного сырья используют отходы лесопильной и деревообрабатывающей промышленности (горбыли, рейки, вырезки и торцы), в том числе отходы фанерной промышленности (карандаши, шпон-рванин), лесосечные отходы (сучья, ветки), опилки.

Из недревесных отходов сырьем для производства древесноволокнистых плит служат: отходы производства древесноволокнистых плит - плитные обрезки; старая бумага - макулатура (для производства мягких плит); отходы бумагоделательной промышленности - коста, пучки неразделившихся волокон.

Отходы лесопиления и деревообработки и сырье древесное для технологической переработки - основные виды сырья для получения технологической щепы в производстве древесноволокнистых плит.

Технологическая щепа поступает на предприятия ДВП из смежных цехов и как готовая продукция с других предприятий. Использование отходов от обработки и сушеной древесины нежелательно.

В качестве сырья для производства ДВП могут применяться почти все породы древесины, произрастающие в европейской части. Практическое значение в производстве ДВП мокрого и сухого способов имеют хвойные породы - ель, сосна, пихта и лиственные - береза, осина.

Качественные требованиям к лесоматериалам определяются ОСТ 13-76 «Сырье древесное для технологической переработки. Размеры и технические требования» и ГОСТ 23827 « Сырье древесное тонкомерное. Технические условия», к щепе - ГОСТ 15815 « Щепа технологическая» и ТУ 15-396 «Щепа технологическая и сучьев».

1.1 Породы древесины

Для производства древесноволокнистых плит мокрым способом хвойные породы в общем объеме потребления занимают преобладающее место, сухим способом - лиственные породы. Это объясняется тем, что каждая породная группа, а в каждой группе каждая порода имеет свои индивидуальные особенности как по физическим свойствам, так и по химическому составу: плотности древесины, ее прочности, длине и толщине волокна, содержанию основных компонентов древесины (целлюлоза, гексозаны, пентозаны, лигнин, пектиновые вещества), которые предпочтительны для мокрого или сухого способов (таблица 1.1) .

Таблица 1.1 - Химический состав экстактивных веществ

Порода древесины

Белковые вещества

Вещества, растворимые в горячей воде

Жиры, воски и смолы

Лиственница

Повышенное содержание легкогидролизуемых веществ у древесины лиственных пород ухудшает качество оборотных вод, снижает выход древесноволокнистой массы при мокром способе.

Для механических свойств древесноволокнистой массы имеют значение величина клеток древесины и другие их особенности. У клеточных элементов лиственной древесины значительно меньше (примерно в три раза) длина волокон по сравнению с трахеидами хвойных пород (таблица 1.2).

Таблица 1.2 - Размеры волокон отечественных пород, мм

В связи с дефицитом хвойного сырья значительно увеличилось использование древесины лиственных пород для производства плит мокрым способом. Средний расход древесины лиственных пород на производство древесноволокнистых плит мокрым способом в европейской части составил примерно 59-73%.

Увеличение доли лиственной древесины стало возможным благодаря применению на ряде предприятий упрочняющих добавок (альбумина, фенолформальдегидной смолы), а также совершенствованию технологических процессов производства плит и его оборудования.

Физико-механические свойства перерабатываемой древесины зависят от предела прочности той или иной породы древесины, что сказывается на процессе образования элементов щепы и на расходе энергии. Наибольшая энергия затрачивается на рубку тополя, сосны, пихты, лиственницы.

1.2 Кора

Для производства древесноволокнистых плит используют щепу, полученную из неокоренного сырья. Кора (корка и луб) физическими свойствами и химическим составом значительно отличается от стволовой древесины. Кора содержит большое количество экстрактивных веществ и лигнина. Количество пентозанов и целлюлозы значительно меньше, чем в стволовой древесине. Среднее объемное содержание коры на стволовой древесине следующее, процент: ель - 9,5; сосна - 12; береза - 13; осина - 14; пихта - 11; лиственница - 18. древесина плита сырье

Выход древесноволокнистой массы из коры примерно на 26% ниже, чем из стволовой, из коры ели - на 12-13 %. Наличие коры березы вызывает затруднения при отделке твердых древесноволокнистых плит лакокрасочными материалами. Кора в тонкомерных сортиментах представлена в основном лубом. Корковый слой у такой древесины отсутствует или имеется в зачаточном состоянии, толщина коры 1-4 мм.

1.3 Гниль и другие дефекты

В зависимости от глубины изменений различают гниль Й, ЙЙ и ЙЙЙ стадий. В гнилой древесине увеличивается число обрывков волокон и средняя длина волокна меньше, чем у здоровой древесины примерно в 1,4-1,8 раза. В древесине, поврежденной дереворазрушающими грибами, по сравнению со здоровой, наблюдается сильное увеличение содержания минеральных веществ, веществ, растворимых в горячей воде, и снижение количества пентозанов. Поперечные разрезы волокон у древесины, пораженной гнилью, меньше, чем у здоровой.

Изменение структуры клеточной стенки отражается на прочности отдельных волокон. Потери древесины, обусловленные гниением, вызывают снижение ее плотности.

Особенности химического состава гнили способствуют снижению выхода древесноволокнистой массы, ухудшению прочностных свойств плит и качества оборотных вод, что сказывается на производстве ДВП. При изготовлении ДВП допускается изготовление щепы, полученной из необлагороженного сырья.

В сырье древесном для технологической переработки ядровая гниль не допускается более: для Й и ЙЙ сортов - 1/4 и для ЙЙЙ сорта - 2/3 толщины соответствующего торца выходом на второй торец не более: для Й сорта - 1/3, ЙЙ сорта - 1/2 и ЙЙЙ сорта - 2/3 его толщины. Содержание гнили в сырье древесном тонкомерном не допускается. Содержание гнили в технологической щепе по ГОСТ 15815 разрешается до 5% от массы щепы. Щепа с содержанием гнили более 5% используется при соответствующей корректировке технологического режима.

Обугленные поверхности древесины для производства щепы не допускаются. Наличие обугленных частиц и металлическихвключений в щепе отрицательно влияет на качественные показатели плит и состояние оборудования, особенно на размольной гарнитуре дефибраторов и рафинаторов. Содержание минеральных включений разрешается не более 1%. При пропуске через гидромоечную установку содержание их снижается на 90-95%.

1.4 Форма, влажность и плотность древесного сырья

Размеры древесного сырья зависят от приемных устройств рубильных машин, наличия специального оборудования для разделки сырья. Размеры древесного сырья для технологической переработки установлены по длине 1-6 м с градацией 1 м независимо от сортности сырья, по толщине для Й сорта - 4 см и выше, для ЙЙ и ЙЙЙ сортов - 2см и выше. При поставке сырья в расколотом виде наибольшая толщина не должна превышать 40 см. Высота оставляемых сучьев не более 5 см.

Отходы лесопиления и деревообработки используют длиной до 4,5-6,5 м. Тонкомерное сырье, получаемое при рубке ухода за лесом и на лесосеках главного пользования при осветлении, прочистке, прореживании, применяется неокоренным, с обрубленными сучьями, с толщиной в верхнем отрубе 2-6 см при длине 1-3 м.

Оптимальная относительна влажность щепы 30-50%. Влажность древесины, поступающей на предприятия, из-за периодичности поставки, различия сроков хранения и ряда других факторов значительно колеблется. Для выравнивания влажности рекомендуется перемешивать щепу в процессе приготовления, загрузки, выгрузки, выдерживать в складах (бункерах), пропускать через гидромойку.

Плотность древесного вещества почти не зависит от породы древесины и составляет в среднем 1540 кг/м?. Плотность древесины как физического тела зависит от объема пор и влажности древесины. В производстве ДВП важнейшую роль играет условная плотность древесины - отношение массы образца в абсолютно сухом состоянии к объему при влажности, равной пределу гигроскопичности или больше его.

2. Характеристика способов производства

Наиболее распространенные способы изготовления древесноволокнистых плит - мокрый и сухой. Промежуточные между ними - мокросухой и полусухой способы, которые получили меньшее распространение.

Мокрый способ основан на формировании ковра из древесноволокнистой массы в водной среде и горячем прессовании нарезанных из ковра отдельных полотен, находящихся во влажном состоянии (при относительной влажности около 70%). При сухом способе ковер формируется из высушенной древесноволокнистой массы в воздушной среде. Плиты получают горячим прессованием полотен, имеющих влажность 5-8%. Полусухой способ основан на формировании ковра из высушенной древесноволокнистой массы в воздушной среде и горячем прессовании полотен, имеющих влажность около 20%, а мокросухой - на формировании ковра из древесноволокнистой массы в водной среде, сушке полотен и горячем прессовании сухих полотен, имеющих влажность, близкую к нулю.

В нашей стране плиты выпускают по мокрому и сухому способам производства. В процессе изготовления плит любым из названных способов древесину измельчают в щепу; затем ее превращают в волокна, из которых формируют ковер, разрезанный далее на полотна. Сухие полотна прессуют в твердые плиты. Влажные полотна или прессуют, получая твердые и полутвердые плиты, или сушат, получая мягкие (изоляционные) плиты. Указанными выше способами можно изготовить волокнистые плиты из любых органических материалов, поддающихся расщеплению на волокна.

2.1 Мокрый способ производства ДВП

Данный способ включает следующие основные стадии :

– получение древесноволокнистой массы;

– проклейка древесноволокнистой массы;

– отлив древесноволокнистого ковра;

– горячее прессование плит;

– пропитка маслом, термическая обработка и увлажнение древесноволокнистых плит;

– форматная резка плит;

– контроль качества.

2.1.1 Производство мягких древесноволокнистых плит

Технологическая схема производства мягких (изоляционных) древесноволокнистых плит на участках приема и подготовки древесного сырья и химических добавок не отличается от схемы производства твердых плит. Но волокнистая масса используется с более высокой на 15-18 ДС степенью помола, т.е. составляет 36-40 ДС. Это достигается применением третьей ступени размола на дисковой мельнице, которую устанавливают на потоке массы, поступающей из рафинаторного бассейна.

В качестве упрочняющей добавки используют малотоксичную фенолоформальдегидную смолу при повышенном на 1-2% расходе по сравнению с расходом для твердых плит. В качестве гидрофобизатора применяют эмульсии с парафин содержащими веществами, а для проклейки плит применяют канифольно-парафиновую эмульсию или эмульсию с сульфатным мылом.

Формирование древесноволокнистого ковра производят на плоскосеточной отливной машине с увеличенной до 2440 мм и более шириной сетки при пониженной до 4 м/мин скорости.

Плиты впускают толщиной от 8 до 25 мм. После отливной машины полотна влажностью порядка 65% автоматически питателем подаются в роликовую сушилку. Промышленное применение нашли 8-,12-и 20-ярусные сушилки с многократной циркуляцией сушильного агента воздуха, подогреваемого в калориферах с применением в качестве теплоносителя насыщенного водяного пара давлением 1,0-1,2 МПа.

Мягкие плиты дополнительной термообработке и кондиционированию не подвергаются.

2.2 Сухого способ производства ДВП

В настоящее время известно несколько технологических схем производства ДВП сухим способом с применением различного оборудования.

Независимо от принятого оборудования технологический процесс производства древесноволокнистых плит сухим способом составляют следующие операции: приемка, хранение сырья и химикатов; приготовление щепы; пропарка, размол щепы на волокна; подготовка связующего и гидрофобизирующих добавок; смешение волокна со связующими и другими добавками; сушка волокна; формирование ковра; предварительное уплотнение (подпрессовка); прессование; кондиционирование плит; механическая обработка плит.

При производстве древесноволокнистых плит сухим способом применяют древесину различных пород, причем в отличие от производства мокрым способом здесь отдается предпочтение древесине лиственных пород, что обусловлено спецификой воздушного ковра. Короткие и ровные волокна лиственных пород, при прочих равных условиях, обеспечивают более равномерную плотность ковра, чем длинные волокна хвойных пород.

Древесина различных пород вследствие особенностей ее структуры требует специфической обработки, поэтому плиты с наименьшим содержанием связующего получают при использовании одной породы. Однако возможно и смешивание различных пород древесины, но при этом следует учитывать особенности ее строения. Плиты с хорошими показателями получают при смешивании пород с одинаковыми или близкими плотностями. При смешивании пород с различной плотностью плиты различаются массой и скоростью волокон в воздушном потоке, поэтому равномерная сушка не может быть обеспечена. Следует также учитывать, что породы древесины разной плотности требуют разных сроков сушки.

2.2.1 Производство ДВП периодическим способом с применением мног о этажного гидравлического пресса

Принципиальная особенность сухого способа производства состоит в формировании древесноволокнистого ковра из сухих волокон и прессование в горячем гидравлическом прессе полотна без транспортной сетки, что значительно сокращает цикл последнего указанного процесса.

Периодический способ производства ДВП включает следующие стадии :

приготовление древесноволокнистой массы. На заводах по производству ДВП сухого способа принята одноступенчатая схема размола щепы с использованием пропарочно - размольной установки, работающей по методу «Бауэра». Установка «Бауэр» состоит из пропарочной камеры рафинера с двумя размольными дисками, вращающимися в разные стороны. Диаметр размольных дисков - 915 мм, частота вращения - 1500 мин -1 . При оценке качества древесноволокнистой массы большое значение придается фракционному составу волокон и их степени помола. Удовлетворительной считают такую древесноволокнистую массу, в которой крупная фракция, оставшаяся на сите № 10 (10 отверстий или ячеек на 1 дюйм сетки), составляет 10%, средняя фракция на сите № 80 - 70% и мелкая на сите № 200 - 20%. Для определения степени помола волокон применяют прибор ВНИИдрев, принцип действия которого основан на определений сопротивления волокон потоку проходящего через него воздуха. Навеску высыпают в рабочую трубку, внутри которой расположена сетка. В трубе вакуум- насосом создается разряжение. Волокна в потоке воздуха скоростью до 1 м/с осаждаются на сетке, покрывая ее тонким слоем. Разряжение под слоем волокон характеризует степень помола выраженную в единицах ВНИИдрев. Древесноволокнистая масса для наружных слоев плит должна иметь степень помола 350 единиц, для внутренних - не менее 250 единиц, что ориентировочно составляет 13,7 и 12 ДС.

введение связующей и гидрофобизирующей добавки. В качестве связующего, вводимого в древесноволокнистую массу, применяют фенолоформальдегидную смолу (например, марки СФЖ-3014), расход которой зависит от толщины плиты: при толщине плиты 6-8 мм - 4-5% от массы сухого волокна, при 10-12 мм - 6-8%. Рабочий раствор фенолоформальдегидной смолы готовят 25%-ной концентрации; его вязкость по вискозиметру ВЗ-4 должна быть 11-25 с. Раствор смолы вводят в массу сразу после мельницы размола. Для придания плите гидрофобных свойств в ее композицию добавляют восковые продукты (парафин). Парафин вводят в расплавленном виде при температуре

80 - 90 ?С путем впрыскивания его в щепу перед шаровым затвором пропарочного котла. Расход парафина составляет 1% от массы сухого древесного волокна.

сушка древесных волокон . После размола абсолютная влажность волокнистой массы достигает 120%. Снижают влажность волокна до 6-8% в две ступени в сушилках. В качестве сушильного агента используются горячий воздух и смесь топочных газов с воздухом. Волокна сушатся во взвешенном состоянии. На первой ступени сушки волокна после размола транспортируются по трубопроводу воздухом, подогретым в воздухонагревателе до температуры 160-170 ?С. Увлажненный воздух и пар отделяются от волокон в циклоне и через выпускную трубу удаляются в атмосферу. Продолжительность сушки на первой ступени 4-5 с. Через ротационный разгрузочный клапан и рыхлитель волокна температурой около 70 ?С и абсолютной влажностью 65-67 % поступают на вторую ступень сушки в барабанную сушилку системы «Бютнер», в которой сушильным агентом служит смесь топочных газов с воздухом. Температура сушильного агента перед сушилкой - 190 ?С, а при поступлении в барабан - 150 ?С. В барабане сушилки сушильный агент движется винтообразно по внутренней цилиндрической его поверхности; при этом волокна интенсивно перемешиваются. Время сушки зависит от шага винтообразного потока, который регулируется направляющими лопатками, расположенными в нижнем канале, и может составлять 8-15 с. После сушки волокна направляются по воздуховоду в циклон, где отделяются от сушильного агента. Температура удаляемого сушильного агента, которая не должна превышать 70 ?С, контролируется системой автоматического регулирования. Сухие волокна проходят пневмосистему охлаждения, после чего направляются на формирование ковра. Процесс сушки волокон требует строгого контроля из-за высокой пожаро- и взрывоопасности.

формирование древесноволокнистого ковра . Формирование древесноволокнистого ковра осуществляется на движущейся сетке в воздушной среде. Участок формирования, предназначенный для изготовления пятислойного ковра, состоит из вакуум-формирующей машины с пятью головками, системы пневмотранспорта, ленточно-валкового предварительного пресса, узла раскроя ковра и плитного форпресса. Сетка вакуум-формирующей машины движется со скоростью 9-50 м/мин, которая зависит от высоты формируемого ковра. Максимальная общая высота формируемого ковра 560 мм. Ковер формируется последовательно в результате перемещения сетки от одной формующей головки к другой. Плотность получаемого древесноволокнистого ковра, зависящая от плотности древесины, степени помола волокна, вакуума под сеткой и других факторов, составляет 15-25 кг/м 3 .

подпрессовка древесноволокнистого ковра. После вакуум-формирующей машины древесноволокнистый ковер поступает в ленточно-валковый пресс, где предварительно подпрессовывается. Пресс состоит из двух пар валков и регистровых валиков, на которые натянуты ленты, шириной 2250 мм. Скорость движения лент регулируется в пределах 9-50 м/мин. Нижняя лента проходит под сеткой вакуум-формирующей машины и движется со скоростью, равной скорости сетки. Верхняя часть пресса состоит из двух секций, соединенных между собой шарнирно. В первой секции регистровые валики расположены наклонно под углом приблизительно 6 градусов по отношению к нижним, что позволяет постепенно уплотнять уходящий в пресс ковер. Просвет между регистровыми валиками во входной части пресса, таким образом, может достигнуть 600 мм. Регистровые валики второй секции расположены горизонтально, параллельно нижним валикам. Расстояние между валиками регулируют в пределах 200 мм. Древесноволокнистый ковер во время подпрессовки значительно уплотняется, становясь транспортабельным. При этом высота ковра уменьшается примерно в 2,5 раза. Оценкой качества ковра служит равномерность распределения плотности ковра и состояние его кромок на следующей стадии технологического процесса - форматной обрезке. Толщина древесноволокнистых полотен после первичной подпрессовки устанавливается в зависимости от толщины изготовляемых плит, мм: для плит толщиной 6 мм - 100, толщиной 8 мм - 140. Древесноволокнистые полотна толщиной свыше 120 мм не могут быть направлены в горячий гидралический пресс из-за недостаточного просвета между плитами пресса, поэтому они подвергаются дополнительной предварительной подпрессовке в одноэтажном плитном форпрессе периодического действия. Форпресс состоит из нижней (неподвижной) и верхней (подвижной) плит, максимальное расстояние между которыми 460 мм. Выгруженное древесноволокнистое полотно из форпресса поступает на участок, где проверяют его качество.

горячее прессование плит . Горячее прессование ведут в 22-этажном гидравлическом прессе, оснащенном механизмом одновременного смыкания плит. ДВП прессуются непосредственно между поверхностями горячих плит пресса без глянцевых, транспортных листов и сеток, которые используются при мокром способе производства. Спрессованные ДВП вдвигаются в приводные ролики, которые направляют их в разгрузочную этажерку, откуда они по одной поступают на конвейер, подающий их на участок обрезки кромок. Разгруженный пресс продувается сжатым воздухом от осевшего волокна.

кондиционирование плит. После продольной обрезки кромок плиты подаются с помощью 88-полочной вагонетки в камеру кондиционирования. Камера разделена на четыре зоны: в зоне 1 происходит выравнивание температуры плит, в ней поддерживаются температура воздуха 60-65?С и относительная влажность воздуха 50%; в зонах 2 и 3 плиты увлажняются при температуре 65-75?С и относительной влажности воздуха 75-80%; в зоне 4 плиты охлаждаются при температуре 20-30?С и относительной влажности воздуха 65-70%. Время тепловлажной обработки составляет 11,3 часа выгруженные из камеры кондиционирования вагонетки с плитами направляются к разгрузочному типпелю. Уложенные пачки плит подвергаются выдержке в течение не менее суток, во время которой снимаются внутренние напряжения в плитах. Завершающий этап технологического процесса - форматная резка плит и, если необходимо, их механическая обработка.

2.2.2 Производство непрерывным способом с применением каландров о го пресса

В производстве ДВП сухим способом перспективным является применение метода непрерывного прессования, т. е. превращение древесноволокнистого ковра в плиту во время его движения с последующей резкой плитной ленты на требуемые форматы. В качестве прессового агрегата могут быть использованы каландр (обогреваемый барабан) или гусеничный плитный пресс. Сухой способ производства плит методом непрерывного каландрового прессования реализуется с применением оборудования фирмы «Бизон» (ФРГ). Этим способом выпускают плиты двусторонней гладкости толщиной 2,5; 3,2; 4,0; 6,5 мм, максимальной шириной 2400мм, длиной 2000; 2440; 2500; 2800; 3600 мм. Технологический процесс изготовления ДВП методом непрерывного каландрового прессования включает в себя следующие операции: приемку сырья и материалов; нормилизацию технологической щепы; приготовление и введение гидрофобизирующего вещества (парафина), связующего вещества (карбидо- и фенолоформальдегидной смолы), пластифицирующей добавки (карбамида или гексаметилентетрамина), отвердителя (хлористого или сульфата аммония); размолщепы на волокна; сушка древесноволокнистой массы; формирование древесноволокнистого ковра; прессование древесноволокнистой плитной ленты; раскрой плитной ленты на форматы; упаковку и укладку плит.

3 . Физико-химические основы производства древесноволокнистых плит

Размол щепы - это одна из ответственных операций технологии производства древесноволокнистых плит. От качества и степени размола зависят процессы отлива и обезвоживания ковра, прессования и термовлагообработки плит, и соответственно, качественные показатели готовых плит. Полученная в процессе размола древесноволокнистая масса, насыщенная водой и дополнительно разбавленная ею в циклоне, представляет собой водную суспензию древесных волокон. Суспензия при значительном разбавлении ее водой приобретает вязкость, соответствующую воде, а при повышении содержания волокон вязкость смеси увеличивается, причем при определенной степени концентрации смесь теряет свойства текучести и перестает быть жидкостью. Концентрацию массы (в процентах) определяют по формуле

где m 1 - масса абсолютно сухого волокна в пробе, г; m 2 - масса всей пробы, г.

Концентрация массы в трубопроводе после первичного размола составляет? 33%, в циклоне при отделении пара концентрация повышается, однако подаваемой водой массу разбавляют и обычно направляют в промежуточный бассейн. Перед вторичным размолом концентрация должна быть не ниже 4%, на отливе - 0,9-1,8%.

Древесноволокнистая масса грубого помола разработкой характеризуется малой разработкой волокон и содержит много пучков волокон. Масса тонкого помола преимущественно состоит из фибриллированных волокон, которые приобрели большую гибкость и способность плотного формования на сетке. Наилучшей оценкой качества волокон является непосредственное изучение их структуры через микроскоп и измерение при помощи специальных приборов длины, диаметра и удельной поверхности волокна.

Для оценки качества волокнистой массы наибольшее распространение получил прибор дефибратор-секунда. Он построен с учетом того, что градус (степень) помола массы выражается в ее способности к обезвоживанию в единицу времени. Обозначается градус помола массы символом ДС. Средние показатели требуемой степени размола при производстве твердых плит составляют при первой ступени размола 15-18, второй - 20-26 ДС.

Кроме характеристики волокнистой массы по степени размола, часто пользуются данными фракционного состава волокна. Фракционирование - это разделение волокон по их размерам. Большинство приборов для фракционирования основано на пропуске определенного количества разбавленной массы через сита с отверстиями, соответствующими группам качественной оценки. Существует несколько методов фракционирования.

На рисунке 3.1 показана зависимость средней длины и толщины волокон в составе древесноволокнистой массы от ее фракционного состава и градуса (степени) помола, выраженной в ДС.

Рисунок 3.1 - График зависимости средней длины и толщины волокон от фракционного состава и градуса помола массы

Установки пропарки и размола щепы рассчитаны на давление насыщенного пара до 1,2 МПа. Пропарка щепы в подогревателе продолжается до 4 мин. Высокое давление насыщенного пара рекомендовалось фирмой «Дефибратор» для создания благоприятных условий размола и снижения расхода электроэнергии на приготовление волокна. Однако в связи с работой по сокращению количества потребляемой воды и решением проблемы очистки сточных вод этой же фирмой выдвинуто предложение о снижении температуры гидротермообработки.

Это объясняется тем, что древесина содержит водорастворимые вещества, а при повышенной температуре в результате гидролитического разложения растворимая часть их значительно увеличивается, снижая выход древесноволокнистой массы и ухудшая характеристику сточных вод. Влияние давления насыщенного пара при размоле на расход электроэнергии и на потери древесной массы отображено графически на рисунке 3.2

Рисунок 3.2 - График зависимости расхода электроэнергии и потерь древесной массы от давления пара при размоле

График показывает возможность экономии расхода сырья при повышенной потребности в электроэнергии с оптимальным давлением пара порядка 0,6 МПа. Однако выбор этого давления должен определяться технико-экономическим расчетом, учитывающим как полученную экономию по снижению затрат на сырье и организацию очистки сточных вод, так и дополнительные затраты на повышенный расход электроэнергии и другие технологические нужды. При изготовлении древесноволокнистой массы с применением низкого давления пара масса получается более гидрофильной, что отрицательно сказывается на свойствах плит, особенно по показателям водопоглощения и набухания. Избежать этого можно повышением температуры прессования, удлинением времени закалки или добавкой гидрофильных веществ.

Древесноволокнистая масса поступает на отлив с концентрацией в пределах 0,9-1,8% и должна быть более низкой при тонком помоле волокна. Вследствие развитой внешне поверхности волокон, полученной при размоле, создаются условия большей степени их сцепления и переплетения. Эта связь усиливается в процессе вакуумного отсоса и механического отжима воды из полотна. Относительную влажность полотна доводят до 68-72%. В таком состоянии полотно становится транспортабельным, а кроме того, максимальное удаление воды снижает расход пара и сокращает время на продолжительную сушку плит. Особенно это важно при производстве мягких плит, так как сушат их не в прессах, а сушильных камерах.

Скорость истечения древесноволокнистой массы должна быть несколько меньше скорости сетки. Наиболее оптимальной считают скорость на 5-10% меньше, чем скорость сетки. При более низкой скорости большее число волокон занимает продольную ориентацию, при увеличении скорости возрастает поперечная ориентация волокон.

Выливание массы на сеточный стол - первая стадия обезвоживания под воздействием силы тяжести. В этот момент начинает формоваться ковер. Правильно подобранная концентрация массы в зависимости от длины волокон и характера размола создает условия структурного соединения их между собой. Если концентрация слишком низкая, волокна осаждаются по отдельности, не создавая достаточной связи, больше подвергаясь направленной ориентации. Интенсивное обезвоживание происходит по всей ширине регистровой части, имеющей подъем 2,5-3,0 градуса.

Скорость обезвоживания древесноволокнистого ковра на регистровой части сеточного стола снижается по мере повышения сухости ковра. На последних валиках волокнистый слой уплотнен настолько, что возникшие капиллярные силы удерживаю воду и дальнейшее обезвоживание становится возможны только отсасыванием. Исследования показывают, что скорость обезвоживания волокнистого ковра прямо пропорциональна толщине слоя массы на сетке, вязкости воды и удельному сопротивлению фильтрации массы. Действующий напор массы в регистровой части имеет небольшую величину, состоящую из напора массы над сеткой и усиливает засасывания. Величина напора значительно возрастает при создании вакуума под сеткой. На скорость обезвоживания сильно влияет вязкость воды, которая зависти от температуры (оптимальна температура отливаемой массы составляет 40-50 ?С (таблица 3.1).

Таблица 3.1 - Зависимость воды от температуры

Удельное сопротивление фильтрации массы характеризуется удельной поверхностью волокон, которая, в свою очередь, определятся качеством размола массы. Сопротивление фильтрации возрастает с увеличением поверхности волокон. Зависимость между скоростью обезвоживания и степенью помола массы подтверждается многочисленными опытами. На рисунке 3.3 приведен график зависимости при отливе образцов плит с различной концентрацией отлива.

Размещено на http://www.allbest.ru/

Рисунок - 3.3 Зависимость времени обезвоживания слоя массы от степени ее размола при концентрации отлива: 1 - 0,75; 2 - 1,5; 3 - 2,0; 4 - 2,5

При интенсивном обезвоживании под действием большого фильтрационного напора происходит относительный сдвиг волокон. Нарушение структуры наблюдается также при чрезмерном давлении валковыми прессами на влажный ковер. Исследованиями установлена необходимость равномерного прироста нагрузки на ковер от 0,012 до 0,5 МПа и более. Для современных отливных машин величину вакуума в отсасывающих устройствах рекомендуют от 0,012-0,015 до 0,030-0,035 МПа с постепенным его наращиванием, а линейное давление валов прессовой части машины должно составлять то 300 до 1200-1500 Н/см. Но даже в этом случае не обеспечивается плавность нагружения, оно носит ступенчатый характер, поэтому изменение нагрузки в процессе обезвоживания предрасполагает к разрушению структуры ковра.

Прессование - основная операция технологического процесса, опреде-ляющая качество выпускаемых плит и производительность оборудования. Во время прессования влажное древесноволокнистое полотно подвергается большому давлению при высокой температуре и превращается в древесноволокнистую плиту. Это превращение происходит вследствие физических, химических и морфологических изменений насыщенного влагой древесного волокна.

Влажность древесноволокнистых полотен определяется степенью обезвоживания в отливной машине. Относительная влажность полотен перед запрессовкой составляет 68-72%. При низкой влажности (меньше 65%) наблюдается ухудшение качества плит и иногда даже расслоение. Это явление находит различные объяснения. Отсутствие достаточной влаги на первой фазе прессование отрицательно сказывается на гидропластических свойствах волокон. Вода и образуемый пар воздействуют на волокна. Между набухающими волокнами происходит более тесный контакт. По мере удаления воды усиливается связь между волокнами, и эта связь тем большая, чем продолжительней процесс отвода воды. Однако длительность данного процесса должна быть оптимальной, поскольку слишком глубокий гидролиз древесины может вызвать усиленное выделение углеводов и сахаристых веществ, образующих пятна на плитах. На рисунках 3.4 и 3.5 приведены диаграммы зависимости удельного давления прессования и влажности прессуем полотен при различных параметрах .

Рисунок 3.4 - Диаграмма обезвоживания плиты в зависимости от толщины отливки из дефибраторной массы (градус помола 9,2 градус ШР) при массе 1 м 2 , кг: 1 - 7,4; 2 - 5,6; 3 - 3,7

Рисунок 3.5 - Диаграмма обезвоживания плиты в зависимости от степени размола (масса отливки 5-6 кг), градус ШР: 1 - 6; 2 - 9,2; 3 - 16

Толщина древесноволокнистых полотен и степень размола массы обратно пропорциональны скорости обезвоживания. Чем толще полотно и чем выше степень размола массы, тем труднее осуществить обезвоживание.

После первой фазы прессования (отжим) переходят ко второй - сушке плит, так как дальнейшее удаление воды возможно только ее испарением. Для ведения процесса сушки снижают удельное давление прессования, чтобы создать благоприятные условия удаления пара из полотен.

Время сброса давления составляет около 15 с. Его поддерживают на уровне 0,8 МПа, что несколько ниже давления выходящего пара. Для обеспечения равномерного выделения пара из влажного волокнистого полотна давления в период сушки сохраняют постоянным

Сушка можно проводить и при большом давлении. При этом улучшается физико-механические свойства плит, однако сушка проходит медленно и возникает опасность образования пятен и пригаров. При более низком давлении увеличивается его разность с давлением выходящего пара, и это приводит к повреждению внутренней структуры плит, а затем к их расслоению.

Снижение давления перед фазой сушки для получения плиты с нужной плотностью не оказывает влияния на последнюю. Плотность плиты определяется на первой фазе прессования. Кроме того, для получения твердой плиты с плотностью 0,9 г/см 3 достаточно удельного давления 0,4МПа (рисунок 3.6) .

Рисунок 3.6 - Диаграмма зависимости плотности отдельного давления прессования

Большое влияние на ход ведения процесса прессования оказывает также температура плит пресса. При мокром способе производства древесноволокнистых плит температура прессования составляет 200-215 ?С. Однако она может быть повышена при определенных условиях до 230 ?С, что предусмотрено в прессовых установках последних моделей. Повышение температуры прессования вызвано стремлением ускорить процесс выпаривания воды из древесноволокнистого полотна. Однако при температуре выше 230 ? С усиливается процесс распада органических соединений, сопровождающийся ухудшением качества волокон, в результате чего плиты получаются хрупкими и слабыми.

Фирма «Дефибратор», исследуя диапазон температур 187-210 ?С, установила, что повышение температуры прессования проводит к улучшению качества физико-механических свойств плит. рост прочности на стратегический изгиб плит наблюдается при увеличении температуры с 200 до 210 ? С. Прирост прочности при этом перепаде температур составил примерно 12-14%.

На продолжительность сушки влияет и степень размола массы, и толщина прессуемых полотен. Чем выше степень размола массы и больше толщина плиты. Тем период сушки продолжительней. Время ее в зависимости от конкретных условий составляет 3,5-7 мин.

Во время второй фазы прессования вода удаляется до тех пор, пока относительная влажность древесноволокнистой плиты не составит 7%. Эта влажность необходима для проведения реакций конденсации в заключительной фазе прессования.

4 . Технологическая схема производства

4.1 Технологическая схема процесса

В настоящее время существует несколько способов технологических схем производства древесноволокнистых плит сухим способом с применением различного оборудования. Технологическая схема производства плит сухим способом представлена в приложении 1(А1). Независимо от принятого оборудования технологический процесс производства древесноволокнистых плит сухим способом составляют следующие операции: приемка, хранение сырья и химикатов; приготовление щепы; пропарка, размол щепы на волокна; подготовка связующего и гидрофобизирующих добавок, смешивание волокна со связующим и другими добавками; сушка волокна; формирование ковра; предварительное уплотнение (подпрессовка); прессование; кондиционирование плит; механическая обработка плит.

По принятой в проекте технологической схеме (рисунок 4.1.1) на одном из заводов долготье кранами выгружают из барж и подают в бассейн. В зимний период долготье из штабелей подают в бассейн автопогрузчиками. В зимний период воду в бассейне нагревают для оттаивания бревен. Из бассейна бревна конвейерами направляются к рубительной машине 1 . Сырье, идущее для наружных слоев плит, окаривают. Бревна диаметром свыше 450 мм перед рубительной машиной проходят через колун. После рубительной машины щепа подается в циклон 2 , а затем на щепосортировачную установку 3 , где крупные отходы направляются на доизмельчение в дезинтегратор 4 и затем снова на сортировку, мелочь собирается в бункер и в дальнейшем сжигается в котельной.

Щепа, пройдя сортировку, пневмотранспортом подается в бункер хранения щепы 5 , которые обеспечивают ее запас на 8-часовую работу размольного отделения. Вибрационные питатели, установленные под бункерами запаса, подают щепу на скребковые конвейера, с которых она поступает на распределительные конвейера для подачи к расходным бункерам щепы 6 . При заполнении расходных бункеров излишки щепы конвейером возвращаются в соответствующий бункер запаса. Из расходного бункера щепа через шлюзовой затвор поступает в пропарочный котел 7 . Пропаривают и размалываю щепу в пропарочно-размольной системе «Бауэр».

В цехе установлены четыре системы, работающие независимо друг от друга. Пропарочные котлы непрерывного действия, горизонтальные. В них распределительным соплом впрыскиваются гидрофобные добавки. Пропарочная щепа под давлением поступает в винтовой питатель, передающий ее в размольную установку (рафинер) 9. В данном производстве используется рафинер «Бауэр-418». В момент прохождения щепы через рафинер включается дозирующая система, и через расходные баки 8 водный раствор смолы и парафина заданной концентрации поступает через распыливающее сопло на выходящее из рафинера волокно.

После рафинеров волокно с введенным связующим направляют на сушилки первой ступени 10 . Температура волокна на выходе из сушилки первой ступени50?С, абсолютная влажность около 67%, температура агента при выходе из циклона 110 ?С.

Пар и влага удаляются в атмосферу через выпускные отверстия, а волокно опускается на дно циклона, проходит через ротационный воздушны затвор и поступает разбиватель, который разбивает комочки на отдельные волокна до поступления в окончательную сушку. В цехе четыре линии сушилок. Сушилка второй ступени 11 предназначена для окончательной сушки волокна. Агентом сушки служат продукты сгорания от дизельного топлива в смеси с воздухом.

Конструкция сушки обеспечивает точное соблюдение температурного режима. Температура волокна на выходе из сушилки 50 ?С. Абсолютная влажность 5±0,5%, температура выходящего из циклона воздуха 70 ?С.

Высушенное до абсолютной влажности 5% древесное волокно пневмотранспортом подается к циклонам, а затем в питающие бункеры-дозаторы четырех формующих головок вакуум-формирующей машины 12 . В бункеры-дозаторы I, II, IV, V головок волокно поступает от каждой из четырех самостоятельных систем размола и сушки волокна, причем в I и V бункеры поступает волокно для наружных слоев, а во II и IV бункеры - для внутренних. В бункер-дозатор III формующей головки подается излишек волокна от формования и обрезки ковра. Принятая система подготовки и распределения волокна позволят получить волокно разного качества. После каждой формующей головки щеточный валик выравнивает ковер на сетке машины. Излишек волокна снимается с поверхности ковра валиками и возвращается в бункер-дозатор III формующей головки.

Под сеткой формирующей машины расположены вакуумные отсосы, предназначенные для удаления воздуха из ковра и уплотнения волокна на сетке. Сетчатый конвейер формирующей машины продвигается поочередно под каждой головкой.

После формировании ковер проходит ленточный пресс установку предварительной подпрессовки 13 . Максимальная толщина ковра после непрерывной подпрессовки 200 мм, масса ковра, подвергаемого подпрессовке, для плит толщиной 2 мм - 2 кг/м 2 ; 12 мм - 10 кг/м 2 . Насыпная масса волокна до подпрессовки около 18 кг/м 3 .

После уплотнения ковер поступает на формующую головку отделочного слоя 14 , а затем на конвейер, на котором установлены пилы продольной резки 16 , весовой измеритель плотности с металлоискателем и контрольным устройством для измерения толщины ковра, а также передвижная поперечная пила15 . Ковер взвешивается непрерывно, его масса регистрируется прибором на пульте управления фомирующей машины. Волокно обрезанных кромок возвращается на III формующую головку.

Полотна обрезанные по ширине и длине, загружаются в загрузочную этажерку 17 и поступают на конвейер ускорения и затем проходят в плитный фортпресс холодной подпрессовки. Фортпресс предназначен для уплотнения более толстых полотен до размеров, обеспечивающих их укладку в горячий пресс. Полотно, подвергаемое холодной подпрессовке, имеет размеры: максимальный 19305650 мм, минимальный 17505450 мм. За фортпрессом расположен бракерный участок, на котором волокно выбраковывается автоматически в зависимости от показаний весов и металлоискателя. Ковры с отклонениями по массе (±3% для тонких и ±5% для толстых плит) или содержащие металлические включения автоматически сбрасываются в дробилку и из нее направляются пневмотранспортом за пределы корпуса.

После фортпресса полотна подают на качающийся конвейер для распределения и передачи их на двухъярусный конвейер. Три секции двухъярусного конвейера помещают одновременно по два полотна в загрузочное устройство пресса. Эти секции необходимы для накапливания полотен во время непосредственной загрузки пресса и возвращения загрузочного устройства в исходное положение. После заполнения загрузочное устройство направляет одновременно все полотна в промежутки пресса без поддонов.

При прессовании плит толщиной 3 мм в течение 20 с от начала смыкания плит пресса 18 удельное давление на полотно достигает 6,5-7 МПа, затем давление снижают для удаления влаги. После прессования загрузочное устройство выталкивает плиты из пресса в разгрузочное устройство 19 , которое укладывает их по одной на конвейер. Далее плиты поступают к станку продольной резки для обрезки по ширине, после чего их направляют на станок поперечной резки для обрезки по длине.

Обрезка плит сразу же после прессования является предварительной и проводится для улучшения условий загрузки плит в 88-полочную вагонетку, с помощью которой плиты подаются в камеру кондиционирования 20 . Число полок в вагонетке определяется этажность пресса: одна вагонетка вмещает плиты четырех запрессовок. Вагонетка загружается с помощью типпельного устройства. Операции, связанные с движением вагонеток, механизированы. Камера разделена на четыре зоны: зону выравнивания температуры, две зоны увлажнения и одну зону охлаждения. Внутри камеры плиты движутся в поперечном направлении. Время выдержки плит толщиной 3,2 мм около 4,5 ч.

Пройдя камеры увлажнения, плиты автоматически разгружаются с тележек и на конвейер для сортировки плит, затем укладываются на деревянные поддоны. Электропогрузчики с вилочными захватами перевозят поддоны с плитами на промежуточный склад для выдержки их в стопах. Суточная выдержка плит необходима для выравнивания напряжений, возникающих в них, перед окончательной обрезкой.

После выдержки плиты электропогрузчиками подают на линию форматной резки. Плиты автоматически, по одной, передаются к станку продольной резки 21 . Станок приспособлен для раскроя плит разной ширины. Кроме того, при необходимости плиты уменьшают по ширине пилой продольной распиловки. Затем плиты автоматически подаются к станку поперечной резки 22 для обрезки их по длине. После форматной резки плиты укладываются на накопители плит 23 и аккумуляторным автопогрузчиком 24 отвозят на склад готовой продукции.

4.2 Характеристика основного оборудования

...

Подобные документы

    Сырьё для производства древесноволокнистых плит и требования к нему. Классификация древесноволокнистых плит. Физические, механические, технологические и специфические свойства плит. Связующие материалы и химические добавки, используемые в производстве.

    реферат , добавлен 11.07.2015

    Назначение цеха по производству древесноволокнистых плит. Основные требования, предъявляемые к сырью, химикатам и готовой продукции. Описание технологической схемы производства древесных плит. Техническая характеристика плоскосеточной отливной машины.

    курсовая работа , добавлен 20.02.2013

    Технологическая схема производства древесноволокнистых плит. Сырье, его подготовка и хранение. Проклейка древесноволокнистой массы. Пропитка маслом, термическая обработка и увлажнение плит. Расчет и подбор основного и вспомогательного оборудования.

    курсовая работа , добавлен 17.11.2009

    Основы технологии химической переработки древесных плит. Определение средневзвешенной плотности сырья и подбор технологического оборудования. Расчет вспомогательного оборудования, склада химикатов, расхода сырья и материалов на единицу продукции.

    курсовая работа , добавлен 28.05.2015

    Выбор и обоснование технологической схемы производства, подбор основного и вспомогательного оборудования. Проектирование цеха по производству мягких теплоизоляционных древесноволокнистых плит. Контроль производства и качества выпускаемой продукции.

    курсовая работа , добавлен 06.08.2015

    Разработка проекта цеха по производству гипсостружечных плит заданной мощности. Подбор состава сырья, проектирование способа производства и обоснование технологического процесса производства гипсовых стружечных плит. Выбор туннельной сушильной камеры.

    дипломная работа , добавлен 14.01.2014

    Древесноволокнистые плиты: разновидности и марки изделий, характеристика исходных сырьевых материалов, способы производства, технологические операции. Подбор основного и вспомогательного оборудования. Методы контроля производственного процесса, продукции.

    курсовая работа , добавлен 12.10.2014

    Виды, свойства и области применения строительной фанеры, древесностружечных и древесноволокнистых плит, их достоинства и недостатки. Сырье, применяемое для их производства, методы изготовления. Способы улучшения эстетических и защитных качеств ДСП и ДВП.

    реферат , добавлен 09.12.2012

    Характеристика цементно-стружечных плит по ГОСТ 26816-86 "Плиты цементно-стружечные. Технические условия". Выбор пресса, ритма конвейера. Расчет древесного сырья, вяжущего, химических добавок и воды. Технология производства цементно-стружечной плиты.

    курсовая работа , добавлен 30.11.2013

    Расчет производственной мощности цеха по производству древесноволокнистых плит. Использование сырья в деревообрабатывающем производстве. Оперативный план работы сборочно-отделочного цеха мебельного производства. План-график выпуска боковых щитов.

ООО «ТарПром» является поставщиком картонных коробок, гофроящиков и упаковочного картона выского качества. Цены на коробки, представленные в разделе «прайс», порадуют Вас и сделают нашим постоянным клиентом. Мы готовы пойти навстречу каждому покупателю, поэтому рады будем обсудить любое Ваше предложение по покупке коробок по телефону, представленному на сайте.

Если вам необходимо осуществить оптовую или розничную покупку гофроящиков, то лучшего варианта, чем сотрудничество с ООО «ТарПром», вам не найти! Качество нашей упаковки остается неизменно высоким, удовлетворяя требованиям самых взыскательных покупателей. Мы всегда можем Вам предложить широкий выбор гофротары и различных видов коробок.

Свою продукцию (гофрокартон, гофроящик, лотки, решетки, прокладки, картон, ДСП, ДВП, МДФ, ФСФ и прочее) мы готовы доставлять непосредственно от завода-производителя к складам заказчика, что позволяет существенно уменьшить денежные затраты со стороны клиента, становится проще ее купить. Сегодня ООО «ТарПром» занимает прочные позиции на рынке и продолжает развиваться, предлагает очень выгодные условия на рынке. Мы заботимся о своей репутации и готовы учитывать любые пожелания клиента. Мы сделаем все, чтобы сэкономить ваше время и деньги. Купить коробки и гофроящики в компании Тарпром - это просто и выгодно!

Купите коробки и гофроящики от Тарпром

Гофроящик

Гофротара активно применяется для упаковки товаров самых разных групп: пищевых продуктов, бытовой химии, обуви, медицинских препаратов и многих других. Гофроящик, состоящий из нескольких слоев, способен надежно защитить товар от воздействия солнечного света, перепадов температуры, механических повреждений при транспортировке.

Упакованную в гофроящики продукцию всегда удобно переносить и складировать таким образом, что она будет занимать минимальное пространство на складе. Гофроящик имеет особенные преимущества перед другими видами упаковки. Всегода удобнее купить товар в хорошей экологичной коробке, на которую к тому же можно нанести необходимые логотипы и метки.



Касса