Решение экологических задач. Как перевести тн угля в гкал, определение потребности топлива

Ваканда - маленькая, строго засекреченная, жестко изолированная страна в Африке, созданная аборигенами в незапамятные времена полумифическим-полуфантастическим образом: при помощи древнеегипетской богини, волшебного цветочка и на залежах внеземного происхождения суперпрочного металла вибраниума. Этот ресурс, судя по всему, - единственное полезное ископаемое и единственная основа экономики, тем не менее, весьма сильной. Форма государственного правления - абсолютная монархия. Ваканда отличается технологическим превосходством, высоким уровнем жизни и страстью к пышным и нелепым церемониям.

Благоденствие этого странного гибрида КНДР и Саудовской Аравии продолжалось до событий фильма "Первый мститель: Противостояние", когда очередного короля, по имени Т’Чака, взорвали негодяи. Сюжет "Черной пантеры" начинается немногим позднее. Наследник, принц Т"Чалла, вступает в должность главы Ваканды, предварительно одолев другого кандидата в честном бою на краю высокого обрыва (ведь именно так выбирают правителей в развитых странах).

Как вдруг на политической арене возникает неожиданная фигура. Киллмонгер - персонаж гамлетовской судьбы, тоже монарших кровей и, следовательно, претендующий на трон. Кроме того, он - выходец из американского гетто, и потому страшно обозлен на белых угнетателей. Фундамент его программы - план установления нового миропорядка: раздать повсеместно, от Нью-Йорка до Гонконга, каждому угнетаемому негру (а иных, как известно, не бывает) по вибраниумовому копью и разжечь таким образом пламя глобальной расовой революции.

Радикальная идея встречает одобрение у многих вакандян - ведь как может сознательный гражданин спокойно спать, зная, что его черных братьев в это время угнетают? Впрочем, лет 200-300 назад, когда население Африки плотно утрамбовывали в трюмы кораблей и увозили на плантации, спалось сознательным гражданам Ваканды, видимо, нормально. Зато теперь вот бессонница мучает.

Т"Чалла T"Чакович же придерживается консервативной позиции: сидеть ровно на тоннах вибраниума, не отсвечивая. Отсюда - конфликт между протагонистом и антагонистом, приводящий к смуте и заражающий бациллами сомнений душу самого Т’Чаллы: очевидно же, что вечно прятаться, единолично потребляя ценное сырье - контрпродуктивно и подло. При этом расовый дискурс маскирует и в конечном счете оправдывает, как и в реальности, косметическую трансформацию капитализма из "плохого, алчного" - в "хороший", т.н. этический капитализм. Кстати, примерно о том же новый фильм Ридли Скотта.

Но если не углубляться, главная тема и ставка в конфликте - будущее всех темнокожих людей планеты. И именно по этой причине подавляющее большинство западных критиков "Черную пантеру" неустанно лобызает, заваливая комплиментами. Оно и понятно: толерантность стоит такая, что спецэффекты от хромакея отклеиваются. В более-менее значительных ролях - всего два белых актера. Настоящее diversity.

Мартин Фримен играет знакомого по "Противостоянию" агента Росса, который становится верным другом Т"Чаллы и его сторонников, но по сути является декоративной мебелью. Выглядит Фримен соответствующе. На лице его читается смятение, а затравленный взгляд вопрошает: зачем я здесь? кто все эти люди? куда подевался Шерлок? У Энди Серкиса, наоборот, вид дерзкий и угрожающий. Он опять изображает мелкопакостного бандита Улисса Кло, появлявшегося в "Эре Альтрона", харизматичного и колоритного. Увы, недолго.

Что касается действительно важных (читай: темнокожих) персонажей, то характеры их - плоские и скучные, а драматические коллизии крутятся вокруг тех самых проблем, которые шерифа не волнуют, и чтобы ими проникнуться, необходимо быть вовлеченным в определенный культурно-социальный контекст. Проще говоря, если вы пигментом не вышли или не сочувствуете чрезмерно невзгодам, выпавшим на долю тех, кто пигментом вышел, то вряд ли пафосная болтовня жителей Ваканды сможет тронуть ваше сердце. А пафосной болтовни в "Черной пантере" много. Очень много. Это самый серьезный и наименее развлекательный и смешной фильм из всей киновселенной Marvel.

Очередь из красочных экшн-сцен - в начале, баталия с использованием бронированных носорогов - в кульминации, а между ними - два рукопашных поединка, не слишком друг от друга отличающихся, и диалоги, один увлекательнее другого (на самом деле нет). Так проходит два с четвертью часа, на протяжении которых можно любоваться экзотическим дизайном антуража, сочетающим футуризм и традиционные африканские мотивы. Весьма недурно это все придумано-нарисовано. Но тоже надоедает.

Выход первого в данной киновселенной "сольного" фильма о чернокожем супергерое был неизбежен - и не только из соображений развития истории. Попробуйте найти и посчитать в высшем руководстве Disney и Marvel представителей отличных от европеоидной рас. Проделайте то же самое с ключевыми супергероями в команде Мстителей. Затем взгляните на количество знаков в сумме домашних сборов "Черной пантеры". А теперь, учитывая вышеупомянутые социально-культурный контекст и трансформацию капитализма, подумайте, как все перечисленные факторы связаны. Возможно, размышления приведут вас к интересным умозаключениям о природе разных вещей.

Для учета поставляемых нерудных материалов (песка, щебня и др.) используются две единицы измерения: куб.м и тонна. При ж/д поставках нерудных материалов учет всегда осуществляется в тоннах. При поставках песка и щебня самосвалами учет чаще всего осуществляется в кубах, т.к. не у каждого карьера и, тем более, не у каждого покупателя песка и щебня имеются весы для взвешивания груженого самосвала.

РАССМОТРИМ БАЗОВЫЕ ВАРИАНТЫ УЧЕТА МАТЕРИАЛОВ В ЗАВИСИМОСТИ ОТ ЕДИНИЦЫ ИЗМЕРЕНИЯ.

1. Учет нерудных материалов в куб.м.

Если учет песка или щебня осуществляют в куб.м, то на загрузке (в карьере) и на выгрузке (например, на стройплощадке) такой учет осуществляется по-разному:

1) на загрузке объем отпускаемого материала измеряют, как правило, ковшами погрузчика или экскаватора. Например, в самосвал необходимо загрузить 30 куб.м песка. Погрузку осуществляет погрузчик с объемом ковша 3 куб.м. Оператор погрузчика загружает в кузов самосвала 10 ковшей песка. При этом количество ковшей необходимо считать не только оператору погрузчика (чтобы не загрузить лишнего), но и водителю самосвала (чтобы не было недогруза). Кроме того, водителю самосвала необходимо также контролировать полноту заполнения ковшей и качество материала.

2) на выгрузке объем привезенного материала принимают с помощью измерения объема этого материала. Для этого приемщик с помощью, например, рулетки определяет внутренний объем кузова самосвала (по борта), а также измеряет либо количество материала, недостающего до объема целого кузова самосвала, либо объем «горки» (сколько загружено выше бортов самосвала). Если кузов самосвала типовой, его могут не обмеривать вручную, а принимать по данным завода-изготовителя (по тех. паспорту).

Смотрите также информацию о для определения объема материала в кузове.

2. Учет нерудных материалов в тоннах.

Если учет песка или щебня осуществляют в тоннах, т.е. путем взвешивания на весах, то это происходит следующим образом:

1) на загрузке пустой самосвал взвешивается на весах, т.е. определяется вес так называемой тары. После чего самосвал направляется в место загрузки. Груженый самосвал снова проходит взвешивание на весах, определяется вес брутто. Вес нетто (вес самого материала) рассчитывается как разница между весом брутто и весом тары (самосвала).

2) на выгрузке все происходит в обратном порядке. Сначала взвешивается груженый самосвал, определяется вес брутто. Далее, после выгрузки, определяется вес пустого самосвала (вес тары), после чего рассчитывается вес нетто (вес материала).

На практике также встречаются ситуация, когда максимально допустимый вес, предусмотренный весами, меньше, чем вес груженого самосвала. В таких случаях приемку материала осуществляют по геометрии кузова самосвала.

ТЕПЕРЬ РАССМОТРИМ ОСНОВНЫЕ ПРИЧИНЫ ОТКЛОНЕНИЙ В ОБЪЕМЕ (ИЛИ ВЕСЕ) ПРИ ПОСТАВКЕ МАТЕРИАЛОВ.

1. Учет материала на загрузке и на выгрузке осуществляют в куб.м.

· фактический объем загруженного в карьере материала меньше, чем указано в выписанных карьером расходных документах на погрузку по причине действия человеческого фактора (погрузчик грузит не полный ковш), фактический объем ковша меньше декларируемого карьером и др.;

· фактический объем загруженного в карьере материала больше, чем указано в выписанных карьером расходных документах на погрузку (погрузчик перегружает ковш; фактический объем ковша больше декларируемого карьером; сговор между оператором погрузчика и поставщиком и т.д.);

· фактический объем принятого приемщиком материала больше, чем фактический объем привезенного материала (ошибки при обмере кузова; сговор между водителем и приемщиком на выгрузке и т.д.);

· фактический объем принятого на приемке материала меньше, чем фактический объем привезенного материала (утряска материала при транспортировке; ошибки при обмере кузова; прямое занижение объема привезенного материала приемщиком в своих личных интересах или в интересах компании-потребителя материала и т.д.).

2. Учет на загрузке и выгрузке осуществляют в тоннах.

В данном случае отклонения могут возникнуть по следующим основным причинам:

· погрешность весов на загрузке и выгрузке существенно отличается;

· потеря воды в материале при его транспортировке (например, для мытого песка);

· обман и сговор на погрузке (выгрузке) при взвешивании материала.

3. Учет на загрузке и выгрузке осуществляют в разных единицах измерения.

Например, на карьере установлены весы и отпуск материала осуществляется в тоннах, а на приемке материал учитывают в куб.м (по геометрии кузова). В таких случаях, для сравнения объема (или веса) на загрузке и на выгрузке необходимо использовать коэффициент насыпной плотности материала. Такой коэффициент определяет, сколько весит 1 куб.м поставляемого материала. Например, средняя насыпная плотность песка карьерного составляет 1,55 т/куб.м, щебня известнякового – 1,3 т/куб.м, т.е. 1 куб.м песка весит 1,55 тонн, 1 куб.м известняка – 1,3 тонн.

Значит, чтобы вес материал перевести в куб.м, необходимо количество тонн разделить на коэффициент насыпной плотности. И наоборот, чтобы узнать вес материала, измеренного в куб.м, необходимо количество куб.м умножить на коэффициент насыпной плотности такого материала.

Тогда возникает вопрос: откуда же берутся отклонения в объеме поставляемого материала, если для перехода из одной единицы измерения в другую необходимо всего лишь выполнить простую арифметическую операцию?

Рассмотрим 2 возможные на практике ситуации:

1) учет и расчеты на погрузке осуществляются в тоннах, на приемке – в куб.м.

Предположим, что весы на карьере настроены с минимальной погрешностью взвешивания. Также предположим, что объем и вес материала в процессе перевозки в кузове не изменился.

Допустим, что на карьере был загружен песок строительный. Согласно паспорта на данный песок, выданного карьером неделю назад, коэффициент насыпной плотности песка – 1,6 тонн/куб.м. Погрузчик с объемом ковша 3 куб.м загрузил 10 ковшей (30 куб.м). Весы показали вес нетто - 45 т (т.е. фактический коэффициент насыпной плотности песка составил 1,5 тонн/м3). Это могло быть вызвано выветриванием влаги в песке с момента измерения данного коэффициента, либо изменением физических свойств или состава вновь добытого и отгруженного песка. На карьере было оплачено за песок 9000 руб. (45 тонн х 200 руб/т). Согласно коэффициента, указанного в паспорте, неделю назад за 9000 руб. на карьере можно было приобрести 28,1 куб.м песка (9000: 200: 1,6), т.е. на 1,9 м3 меньше.

Если расчеты с карьером по договору осуществляются в тоннах, тогда покупателю выгоднее загружаться песком с минимальным фактическим коэффициентом насыпной плотности, т.к. в этом случае он получает максимальный объем песка на определенное количество денежных средств, оплаченных на карьере.

Теперь рассмотрим 2 варианта определения объема песка на приемке:

- по геометрии кузова

Предположим, что на приемке с помощью измерения кузова самосвала был принят такой же объем песка 30 куб.м. В данной ситуации в бух. учете будет оприходовано 45 тонн песка (или согласно паспорта карьера - 28,1 м3). Реализовано песка - 30 м3. В бух. учете возникает дополнительный "бумажный" доход по причине отклонения объемов приобретенного и реализованного песка - 1,9 м3.

Расчетный объем загруженного песка на основании паспорта составил 28,1 куб.м (45 т: 1,6), что ниже фактического на 1,9 куб.м. Реальный коэффициент оказался равным 1,5 тонн/куб.м (45 т: 30 куб.м), т.е. фактически песок оказался легче, чем было указано карьером в паспорте.

Таким образом, согласно данным бухгалтерского учета, поставщик приобрел и реализовал 28,1 м3 песка, хотя фактический объем песка составил 30 м3. При этом, поставщик фактически недополучает доход от продажи 1,9 куб.м песка, а компания-потребитель экономит расходы на приобретение 1,9 куб.м песка.

Теперь немного поменяем условия.

Коэффициент насыпной плотности, указанный в паспорте на песок, был рассчитан во время засушливых дней и составил 1,5 тонн/куб.м, после чего прошли дожди и коэффициент изменился. На карьере погрузчик с объемом ковша 3 куб.м загрузил те же 10 ковшей (30 куб.м) фактическим весом 48 тонн. Вес песка, рассчитанный на основании указанного коэффициента составил 45 тонн (30 куб.м х 1,5).

Рассмотрим также 2 варианта определения объема песка на приемке:

- по геометрии кузова

Предположим, что на приемке с помощью измерения кузова самосвала был принят такой же объем песка 30 куб.м. В данной ситуации в бух. учете будет оприходовано 48 тонн песка (или согласно паспорта карьера - 32 м3 (48: 1,5)). Реализовано песка - 30 м3. В бух. учете возникает "бумажный" расход по причине отклонения объемов приобретенного и реализованного песка - 2 м3.

- расчетным путем с помощью веса песка , указанного в накладной и коэффициента насыпной плотности, указанного в паспорте на песок

Расчетный объем загруженного песка на основании паспорта составил 32 куб.м (48 т: 1,5), что выше фактического на 2 куб.м. Реальный коэффициент оказался равным 1,6 тонн/куб.м (48 т: 30 куб.м), т.е. фактически песок оказался тяжелее, чем было указано карьером в паспорте.

Таким образом, согласно бух. учета, поставщик приобрел и реализовал 32 м3 песка, хотя фактический объем составил 30 м3. При этом, поставщик фактически получает дополнительный доход от продажи "бумажных" 2 куб.м песка, а компания-потребитель несет дополнительные расходы на приобретение таких же "бумажных" 2 куб.м песка.

2) учет и расчеты на погрузке осуществляются в куб.м, на приемке – в тоннах.

Предположим, что весы на приемке настроены с минимальной погрешностью взвешивания. Также предположим, что объем и вес материала в процессе перевозки в кузове не изменился.

Допустим, что на карьере был загружен песок строительный. Согласно паспорта на данный песок, выданного карьером неделю назад, коэффициент насыпной плотности песка – 1,6 тонн/куб.м. Погрузчик с объемом ковша 3 куб.м загрузил 10 ковшей (30 куб.м). На карьере было оплачено за песок 9000 руб. (30 куб.м х 300 руб/куб.м).

Предположим далее, что на приемке определен вес нетто материала - 45 тонн. Т.е. фактический коэффициент составляет 1,5 тонн/куб.м. Вес материала, рассчитанный на основе загруженного объема и указанного в паспорте коэффициента насыпной плотности, - 48 тонн (30 х 1,6). В данной ситуации в бух. учете будет оприходовано 48 тонн песка, а реализовано - 45 тонн песка. В бух. учете возникает дополнительный "бумажный" расход по причине отклонения веса приобретенного и реализованного песка - 3 тонны. Фактически, ни поставщик, ни покупатель песка ничего не теряют и ничего не приобретают от разницы фактического коэффициента и коэффициента, указанного в паспорте карьера.

Если расчеты с карьером по договору осуществляются в кубах, тогда покупателю выгоднее загружаться песком с максимальным фактическим коэффициентом насыпной плотности, т.к. в этом случае он получает максимальный вес песка на определенное количество денежных средств, оплаченных на карьере.

Решение:

Подсчитаем, сколько тонн углерода содержится в атмосфере Земли. Составляем пропорцию: (молярная масса оксида углерода М(СО 2) = 12 т × т = 44 т)

В 44 тоннах углекислого газа содержится 12 тонн углерода

В 1 100 000 000 000 тонн углекислого газа – Х тонн углерода.

= ;

Х = 1 100 000 000 000× ; Х = 300 000 000 000 тонн

В современной атмосфере Земли находится 300 000 000 000 тонн углерода.

Теперь необходимо выяснить, за какое время количество углерода "пройдет" через живые растения. Для этого необходимо полученный результат разделить на годовое потребление углерода растениями Земли.

Х = в год

Х = 300 лет.

Таким образом, весь углерод атмосферы за 300 лет будет полностью ассимилирован растениями, побывает их составной частью и вновь попадет в атмосферу Земли.

Входной контроль:

Найдите соответствие между понятием и его определением, ответы оформите в таблицу:

вопрос вариант ответа
Видовое разнообразие: а) Все разнообразие пищевых взаимоотношений между организмами в экологических системах, включающее потребителей и весь спектр их источников питания.
Пищевая цепь: б) Графическое изображение соотношения между продуцентами, консументами и редуцентами в биоценозе, выраженное в единицах массы, численности особей или энергии.
Сети питания: в) Изменение видового состава биоценоза, сопровождающееся повышением устойчивости сообщества.
Семена биоценозов: г) Совокупность видов живых организмов, принадлежащих к различным царствам живой природы, образующих сообщество.
Экологическая пирамида: д) Ряд взаимосвязанных видов, из которых каждый предыдущий служит пищей последующему.

Ход выполнения работы:

Задание №1

Впишите организмы, которые должны быть на пропущенном месте следующих пищевых цепей:

Задание №2

Составьте описание искусственной экосистемы на примере аквариума по предложенному плану.

1. Какие условия необходимо соблюдать при создании экосистемы аквариума.

2. Опишите аквариум как экосистему, с указанием абиотических, биотических факторов среды, компонентов экосистемы (продуценты, консументы, редуценты).

3. Составьте пищевые цепи в аквариуме.

4. Какие изменения могут произойти в аквариуме, если:

· падают прямые солнечные лучи;

· в аквариуме обитает большое количество рыб.

5. Сделайте вывод о последствиях изменений в экосистемах.

Задание №3

Решите экологические задачи (по вариантам).

Вариант 1

Зная правило десяти процентов, рассчитайте, сколько нужно травы, чтобы вырос один орел весом 5 кг (пищевая цепь: трава – заяц – орел). Условно принимайте, что на каждом трофическом уровне всегда поедаются только представители предыдущего уровня.

Вариант 2

На территории площадью 100 км 2 ежегодно производили частичную рубку леса. На момент организации на этой территории заповедника было отмечено 50 лосей. Через 5 лет численность лосей увеличилась до 650 голов. Еще через 10 лет количество лосей уменьшилось до 90 голов и стабилизировалось в последующие годы на уровне 80-110 голов.

Определите численность и плотность поголовья лосей:

а) на момент создания заповедника;

б) через 5 лет после создания заповедника;

в) через 15 лет после создания заповедника.

Выходной контроль:

1. Из предложенного списка живых организмов составить трофическую сеть: трава, ягодный кустарник, муха, синица, лягушка, уж, заяц, волк, бактерии гниения, комар, кузнечик. Укажите количество энергии, которое переходит с одного уровня на другой.

2. Зная правило перехода энергии с одного трофического уровня на другой (около10%), постройте пирамиду биомассы третьей пищевой цепи (задание 1). Биомасса растений составляет 40 тонн.

3. Вывод: что отражают правила экологических пирамид?

Страница 2

1 кг природного урана заменяет 20 т угля.

Мировые запасы энергоресурсов оцениваются величиной 355 Q, где Q - единица тепловой энергии, равная Q=2,52*1017 ккал = 36*109 тонн условного топлива /т.у.т/, т.е. топлива с калорийностью 7000 ккал/кг, так что запасы энергоресурсов составляют 12,8*1012 т.у.т.

Из этого количества примерно 1/3 т.е. ~ 4,3*1012 т.у.т. могут быть извлечены с использованием современной техники при умеренной стоимости топливодобычи. С другой стороны современнные потребности в энергоносителях составляют 1,1*1010 т.у.т./год, и растут со скоростью 3-4% в год, т.е. удваиваются каждые 20 лет.

Легко оценить, что органические ископаемые ресурсы, даже если учесть вероятное замедление темпов роста энергопотребления, будут в значительной мере израсходованы в будущем веке.

Отметим кстати, что при сжигании ископаемых углей и нефти, обладающих сернистостью около 2,5 %, ежегодно образуется до 400 млн.т. сернистого газа и окислов азота, т.е. около 70 кг. вредных веществ на каждого жителя земли в год.

Использование энергии атомного ядра, развитие атомной энергетики снимает остроту этой проблемы.

Действительно, открытие деления тяжелых ядер при захвате нейтронов, сделавшее наш век атомным, прибавило к запасам энергетического ископаемого топлива существенный клад ядерного горючего. Запасы урана в земной коре оцениваются огромной цифрой 1014 тонн. Однако основная масса этого богатства находится в рассеяном состоянии - в гранитах, базальтах. В водах мирового океана количество урана достигает 4*109 тонн. Однако богатых месторождений урана, где добыча была бы недорога, известно сравнительно немного. Поэтому массу ресурсов урана,которую можно добыть при современной технологии и при умеренных ценах, оценивают в 108 тонн. Ежегодные потребности в уране составляют, по современным оценкам, 104 тонн естественного урана. Так что эти запасы позволяют, как сказал академик А.П.Александров, "убрать Дамоклов меч топливной недостаточности практически на неограниченное время".

Другая важная проблема современного индустриального общества - обеспечение сохранности природы, чистоты воды, воздушного бассейна.

Известна озабоченность ученых по поводу "парникового эффекта", возникающего из-за выбросов углекислого газа при сжигании органического топлива, и соответствующего глобального потепления климата на нашей планете. Да и проблемы загазованности воздушного бассейна, "кислых" дождей, отравления рек приблизились во многих районах к критической черте.

Атомная энергетика не потребляет кислорода и имеет ничтожное количество выбросов при нормальной эксплуатации. Если атомная энергетика заменит обычную энергетику, то возможности возникновения "парника" с тяжелыми экологическими последствиями глобального потепления будут устранены.

Чрезвычайно важным обстоятельством является тот факт, что атомная энергетика доказала свою экономическую эффективность практически во всех районах земного шара. Кроме того, даже при большом масштабе энергопроизводства на АС атомная энергетика не создаст особых транспортных проблем, поскольку требует ничтожных транспортных расходов, что освобождает общества от бремени постоянных перевозок огромных количеств органического топлива.

3.1 Классификация ядерных реакторов

Ядерные реакторы делятся на несколько групп:

· в зависимости от средней энергии спектра нейтронов - на быстрые, промежуточные и тепловые;

· по конструктивным особенностям активной зоны - на корпусные и канальные;

· по типу теплоносителя - водяные, тяжеловодные, натриевые;

· по типу замедлителя - на водяные, графитовые, тяжеловодные и др.

Для энергетических целей, для производства электроэнергии применяются:

· водоводяные реакторы с некипящей или кипящей водой под давлением,

· уран-графитовые реакторы с кипящей водой или охлаждаемые углекислым газом,

· тяжеловодные канальные реакторы и др.

В будущем будут широко применяться реакторы на быстрых нейтронах, охлаждаемые жидкими металлами (натрий и др.); в которых принципиально реализуем режим воспроизводства топлива, т.е. создания количества делящихся изотопов плутония Pu-239 превышающего колич ество расходуемых излотопов урана U-235. Параметр, характеризующий воспроизводство топлива называется плутониевым коэффициентом. Он показывает, сколько актов атомов Pu-239 создается при реакциях захвата нейтронов в U-238 на одмин атом U-235, захва тившег о нейтрон и претерпевшего деление или радиационное превращение в U-235.

3.1.2 Реакторы с водой под давлением.

Реакторы с водой под давлением занимают видное место в мировом парке энергетических реакторов. Кроме того, они широко используются на флоте в качестве источников энергии как для надводных судов, так и для подводных лодок. Такие реакторы относительно компактны, просты и надежны в эксплуатации. Вода, служащая в таких реакторах теплоносителем и замедлителем нейтронов, относительно дешева, неагрессивна и обладает хорошими нейтронно-физическими свойствами.

Реакторы с водой под давлением называются иначе водоводяными или легководными. Они выполняются в виде цилиндрического сосуда высокого давления со сьемной крышкой. В этом сосуде (корпусе реактора) размещается активная зона, составленная из топливных сборок (топливных кассет) и подвижных элементов системы управления и защиты. Вода входит через патрубки в корпус, подается в пространство под активной зоной, двигается вертикально вверх вдоль топливных элементов и отводится через выходные патрубки в контур циркуляции. Тепло ядерных реакций передается в парогенераторах воде второго контура, более низкого давления. Движение воды по контуру обеспечивается работой циркуляционных насосов, либо, как в реакторах для станций теплоснабжения, - за счет движущего напора естественной циркуляции.

Как перевести тн угля в Гкал? Перевести тн угля в Гкал не сложно, но для этого давайте сначала определимся с тем, для каких целей нам это необходимо. Существуют как минимум три варианта необходимости в расчете перевода имеющихся запасов угля в Гкал, это:


В любом случае, кроме исследовательских целей, где необходимо знать точную калорийность угля, достаточно знать, что при сгорании 1 кг угля со средней теплотворной способностью выделяется примерно 7000 ккал. Для исследовательских целей необходимо знать ещё и откуда, или из какого месторождения, нами получен уголь.
Следовательно, сожгли 1 тн угля или 1000 кг получили 1000х7000=7 000 000 ккал или 7 Гкал.

Калорийность марок каменных углей.

Для справки: калорийность каменных углей колеблется в пределах 6600-8750 калорий. У Антрацита она достигает 8650 калорий, а вот калорийность бурых углей колеблется от 2000 до 6200 калорий, при этом бурые угли содержат до 40% несгораемого остатка – шлама. При этом антрацит плохо разгорается и горит только при наличии сильной тяги, а вот бурый уголь напротив, хорошо разгорается, но дает мало тепла и быстро прогорает.

Но здесь, и в любом из последующих расчетов, не забывайте, что это тепло выделяемое при сгорании угля. А при отоплении дома, в зависимости от того, где у нас сжигается уголь в печи или котле, тепла вы получить меньше, за счет так называемого КПД (коэффициента полезного действия) отопительного устройства (читайте котла или печи).

Для обычной печи этот коэффициент не более 60%, как говорят, тепло улетает в трубу. Если у вас котел и водяное отопление в доме, КПД может достигать у крутых импортных, читайте современных котлов 92%, обычно для отечественных котлов, работающих на угле, КПД не более 70-75%. Следовательно, загляните в паспорт котла и умножьте полученные 7 Гкал на КПД, как раз и получите искомую величину – сколько Гкал вы получите, израсходовав на отопление 1 тн угля или что тоже самое как перевести тн угля в Гкал.

Израсходовав 1 т угля на отопление дома с импортным котлом, мы получим приблизительно 6,3 Гкал, а вот с обычной печью всего 4,2 Гкал. Пишу с обычной печью, потому, что существует много конструкций экономных печей, с повышенной теплоотдачей или высоким КПД, но, как правило, они имеют большие размеры и не каждый мастер берется за их кладку. Причина в том, что при неправильной кладке или даже при небольшой неисправности экономной печи, в определенных условиях возможно ухудшение или полное отсутствие тяги. В лучшем случае это приведет к плачу печи, ее стены будут сырые от конденсата, в худшем отсутствие тяги может привести к угоранию хозяев от угарного газа.

Какой запас угля необходимо сделать на зиму?

Теперь остановимся на том, что мы все эти расчеты делаем для того, чтобы знать, какой запас угля необходимо сделать на зиму. В любой литературе, кстати, и у нас на сайте, вы можете прочитать, что например, для отопления дома площадью 60 квадратных метров, вам потребуется приблизительно 6 кВт тепла в час. Переведя кВт в Гкал получим 6х0,86 = 5,16 ккал/час, откуда мы взяли 0,86 .

Теперь, казалось бы, все просто, зная количество тепла, необходимое на отопление в час, умножаем его на 24 часа и количество отопительных дней. Желающие проверить расчет получат, казалось бы, неправдоподобную цифру. На 6 месячное отопление довольно небольшого домика в 60 квадратных метров нам необходимо потратить 22291,2 Гкал тепла или запасти 22291,2/7000/0,7=3,98 тонны угля. С учетом наличие несгораемого остатка в угле эту цифру необходимо увеличить на процент примесей, в среднем это 0,85 (15% примесей) для каменных углей и 0,6 для бурых. 3,98/0,85=4,68 т каменного угля. Для бурого эта цифра вообще будет астрономической, поскольку тепла он дает почти в 3 раза меньше и содержит очень много негорючей породы.

В чем же ошибка, да в том, что 1 квт тепла на 10 м квадратных площади дома мы тратим только в морозы, для Ростовской области, например это -22 градуса, Москвы -30 градусов. На эти морозы и рассчитывается толщина стен жилых домов, а, сколько дней у нас в году бывают такие морозы? Правильно, максимум 15 дней. Как же быть, для упрощенного расчета, собственных целей, Вы можете просто умножить полученное значение на 0,75.

Коэффициент 0,75 выведен на основании усреднения более точных расчетов, применяемых при определении потребность в условном топливе для получения лимитов на это самое топливо в органах власти промышленными предприятиями (горгазы, регионгазы и т.д.) и естественно официально ни где, кроме собственных расчетов использовать нельзя. Но приведенная выше методика перевода тн угля в Гкал, а затем определения потребности угля для собственных нужд довольно точна.

Конечно, можно привести и полную методику определения потребности в условном топливе , но выполнить такой расчет без ошибок довольно сложно, и в любом случае официальные органы его примут только от организации имеющей разрешение и аттестованных специалистов на выполнение данных расчетов. Да и простому обыватели он кроме потери времени ни чего не даст.

Точный расчет потребности в угле для отопления жилого дома Вы можете сделать в соответствии с приказом Министерства промышленности и энергетики РФ от 11.11.2005 г. № 301 «Методика определения норм выдачи бесплатного пайкового угля для бытовых нужд пенсионерам и другим категориям лиц, проживающим в угледобывающих регионах в домах с печным отоплением и имеющим право на его получение в соответствии с законодательством Российской Федерации». Пример такого расчета с формулами приведен на .

Для специалистов предприятий интересующихся в расчете годовой потребности в тепле и топливе, самостоятельно можете изучить следующие документы:

— Методика определения потребности в топливе Москва, 2003г, Госстрой 12.08.03

— МДК 4-05.2004 «Методика определения потребности в топливе, электрической энергии и воде при производстве и передаче тепловой энергии и теплоносителей в системах коммунального теплоснабжения» (Госстрой РФ 2004 год) или добро пожаловать к нам, расчет недорогой, выполним быстро и точно. Все вопросу по телефону 8-918-581-1861 (Юрий Олегович) или по электронной почте указанной на страничке .



Бизнес идеи